

PROD. TEC. ITV DS - N012/2018

10.29223/PROD.TEC.ITV.DS.2018.12.Borges

PRODUÇÃO TÉCNICA ITV DS

ABELHAS DA FLORESTA NACIONAL DE CARAJÁS

Relatório Parcial do Projeto Biodiversidade e Mineração

Rafael Cabral Borges Tereza Cristina Giannini

Título: Abelhas da floresta Nacional de Carajás							
PROD. TEC. ITV DS- N012/2018	Revisão						
Classificação: () Confidencial () Restrita () Uso Interno (x) Pública	00						

Dados Internacionais de Catalogação na Publicação (CIP)

B732a

Borges, Rafael Cabral

Abelhas da floresta Nacional de Carajás. Relatório parcial do Projeto Biodiversidade e Mineração / Rafael Cabral Borges; Tereza Cristina Giannini – Belém: ITV, 2018.

25. páginas: il.

1. Polinizadores – Abelhas. 2. Floresta Nacional de Carajás – Ecossistema. 3. Funções ecossistêmicas. Título

CDD 23. ed. 576.875

RESUMO EXECUTIVO

Espécies pouco carismáticas, como os insetos, geralmente recebem pouca atenção em projetos envolvendo levantamento de espécies e/ou estudos de biodiversidade. No entanto, o papel de tais espécies tem merecido uma atenção crescente, e sua importância tem sido reconhecida cada vez mais pela comunidade científica e pelos tomadores de decisão envolvidos com estratégias para conservação ou restauração de habitats. Tais espécies desempenham várias funções dentro do ecossistema, entre elas, a polinização, o controle biológico, provisão de alimentos e ciclagem de matéria orgânica. Dentre os insetos polinizadores, destacam-se as abelhas, responsáveis pela polinização de mais de 80% das plantas com flores. As diferentes espécies de abelhas cumprem diferentes papéis dentro dos ecossistemas devido a variabilidade das morfologias florais. Assim, aspectos como o tamanho corporal da abelha afeta a interação dessas espécies com as plantas; portanto, além da lista de espécies de abelhas de uma região, importa também entender traços funcionais que influenciarão seus padrões de interação. O presente relatório teve por objetivo estruturar um banco de dados das espécies de abelhas que ocorrem na Floresta Nacional de Carajás, uma vez que não havia ainda uma lista de espécies disponível. Além da lista, duas características dessas espécies foram pesquisadas: seu tamanho corporal, obtido através da distância intertegular, e seu papel potencial como polinizador de culturas agrícolas.

RESUMO

As abelhas são o grupo mais importante de animais polinizadores em todo o mundo. O serviço

ecossistêmico que elas fornecem é vital tanto em áreas naturais quanto em áreas agrícolas. A

riqueza de espécies de abelhas presentes em ambientes naturais é de grande importância para

entender o funcionamento dos ecossistemas. A cadeias de montanhas ferruginosas da Floresta

Nacional de Carajás tem grande importância ecológica e econômica, tanto no cenário nacional

quanto global, apresentando um conjunto único de características moldadas por sua estrutura

geológica (formações ferríferas bandadas) e a presença de campos rupestres ferruginosos

(afloramento de minério de ferro) imersos na Floresta Amazônica. Este trabalho teve por

objetivo estruturar um banco de dados das espécies de abelhas que ocorrem na Floresta

Nacional de Carajás. No total, 219 espécies de abelhas foram coletadas em Carajás entre 1981

até 2014. Além da lista completa, para cada espécie é fornecido o tamanho corpóreo (a partir

da distância intertegular) e quais espécies foram previamente citadas como polinizadores de

culturas agrícolas brasileiras.

Palavras-chave: polinizadores, tamanho corpóreo, funções ecossistêmicas, polinizadores

agrícolas, conservação

ABSTRACT

Bees are the most important group of animal pollinators worldwide. The ecosystem service they provide is vital in both natural and crop lands. The richness of bee species present in natural environments is of great importance in understanding environmental functioning. The ferruginous mountain ranges of Floresta Nacional de Carajás have a great ecological and economic importance, both in national and global scenarios, presenting a unique set of features molded by its geologic structure (banded iron formations) and ferruginous rock plateaus (outcropped iron ore), surrounded by dense tropical forest vegetation. This work aimed at structuring a database of the bee species that occur in the ferruginous mountains of the Carajás National Forest. In total, 219 species of bees were collected in the Serra dos Carajás, from the years of 1981 to 2014. In addition to the complete list, the body size is presented for each species (as intertegular distance) and also which species were previously cited as crop pollinators in Brazil.

LISTA DE FIGURAS

Figura 1: Localização da Area de Estudo
Figura 2: Abelhas de diferentes tamanhos corpóreos e medida da distância interteglar. (a)
Vista Lateral de Hylaeus tricolor (Schrottky, 1906) (b) Augochloropsis callichroa
(Cockerell, 1900) (c) Melipona seminigra Moure & Kerr, 1950 (d) Megachile orba
Schrottky, 1913 (e) Euglossa amazonica Dressler, 1982 (f) Bombus transversalis
(Olivier, 1789) (g) Eulaema cingulata (Fabricius, 1804) (h) Xylocopa frontalis
(Olivier, 1789). Fotos de Fernanda Trancoso. (i) vista dorsal de uma abelha
Euglossini com a medida do ITD (distância intertegular)

LISTA DE TABELAS E ANEXOS

Anexo	1: Lista	de	espécies	de	abelhas	presentes	na	FLONA	de	Carajás,	sua	medida	de
	tamanho	cor	póreo e ir	ıfor	macão so	obre polini	zad	ores agríc	olas	S			.21

SUMÁRIO

1.	INTRODUÇÃO	7
2.	MATERIAL E MÉTODOS	10
3.	RESULTADOS	13
4.	DISCUSSÃO	14
5.	CONCLUSÕES	17
6.	REFERÊNCIAS BIBLIOGRÁFICAS	17

1. INTRODUÇÃO

Espalhadas ao redor do globo terrestre, podemos encontrar várias formações montanhosas que abrigam reservas minerais, e pelas quais existe alto interesse econômico (Klein 2005). Um desses minerais é o minério de ferro, empregado em larga escala desde o sec. XVII principalmente no setor de engenharia civil (Machado & Figueirôa 2001). Os principais depósitos de minério de ferro conhecidos foram formados pela deposição de camadas de óxido de ferro intercaladas por sílica, originando as Formações Ferríferas Bandadas (BIF) (Klein 2005; Katsuta et al. 2012). Durante os milhões de anos subsequentes os BIFs foram movimentados, impelidos pela movimentação de placas tectônicas, proporcionando o seu lento soerguimento e originando cadeias de montanhas de topo achatado, onde ocorre a exposição ou o "afloramento" do minério de ferro, formando uma paisagem de campos ferruginosos de altitude (Bekker et al. 2010, Skirycz et al. 2014).

No Brasil, a cadeia de montanhas ferruginosas da Serra dos Carajás está localizada na região norte do Brasil, porção sudeste do estado do Pará. Politicamente ocupa 7 municípios do sudeste paraense, sendo considerada a principal província mineral do país, contendo cerca de 18 bilhões de toneladas de minério. Geologicamente, está localizada na porção leste do Craton da Amazônia, com idade estimada de 2,8 bilhões de anos (Klein & Ladeira 2002, Rosiére & Chemale 2000). Em Carajás, os platôs de montanhas são caracterizados pela presença de campos rupestres de altitude, chamados de Cangas, áreas de afloramento de ferro, situadas entre 500 e 800 metros de altitude e margeadas por grandes áreas de Floresta Tropical Amazônica primária com dossel de mais de 30 metros de altitude (Jacobi et al 2008, Skirycz et al. 2014, Viana et al 2016). Áreas de floresta tropical (e.g. Mata Atlântica e a Amazônia) estão associadas a uma alta diversidade biológica, em especial a Floresta

Amazônica, que pode abrigar uma a cada cinco espécies de plantas ou animais vertebrados do mundo (Nepstad et al. 2008, Saraiva et al 2018).

Além da diversidade de espécies, as interações que ocorrem entre elas em seus habitats naturais são importantes, pois atuam diretamente na manutenção e funcionamento dos ecossistemas. Interações mutualísticas entre plantas e polinizadores, por exemplo, são fundamentais tanto em ambientes naturais quanto em áreas cultivadas, uma vez que mais de 80% das Angiospermas dependem de alguma maneira de polinização por animais (Ollerton 2017), e cerca de 70% das plantas cultivadas para produção agrícola no mundo dependem do serviço de polinização (Klein et al. 2007). Dentre os grupos de animais polinizadores podemos destacar aves e morcegos como exemplos de vertebrados, e borboletas, moscas e abelhas como exemplos de insetos (Ollerton et al. 2017).

Dentre os insetos, as abelhas são consideradas o principal grupo de polinizadores para a maioria das plantas, sendo essenciais em ambientes naturais e também em áreas de cultivo, pelo fornecimento de serviços de polinização (Garibaldi et al. 2013, Potts et al 2016). Podem ser utilizadas também como ferramenta socioambiental, ajudando a garantir a melhoria nos meios de subsistência, a conservação da diversidade biológica, desenvolvimento científico, cultural e também como meio de recreação (Garibaldi et al. 2013, Rader et al. 2014, Matias et al. 2017). O valor monetário do serviço de polinização pode ser calculado quando levamos em consideração culturas agrícolas (Winfree et al 2011, Kleijn et al 2015), porém quando consideramos áreas naturais, esse valor pode ser mais difícil de ser percebido ou mesmo mensurado. No entanto, tais serviços influenciam diretamente a qualidade do ambiente local, a manutenção de espécies e, consequentemente, o provimento de polinizadores para áreas naturais e de cultivo (Goff, Waring & Noblet 2017).

Além disso, o sucesso do serviço de polinização está diretamente associado à relação entre o tamanho e morfologia da flor e o tamanho corporal de seu visitante (Armbruster &

Muchhala 2009, Castilla et al. 2017). A transferência de grãos de pólen se dá pelo contato, sendo o tamanho do corpo das abelhas um importante caráter para determinar se elas são capazes de transferir grãos de pólen entre os órgãos sexuais das flores e garantir, assim, a sua consequente polinização (Nagano et al 2014). Por exemplo, abelhas pequenas para uma determinada flor podem ser pilhadoras de recursos e não atuarem como polinizadores eficientes, enquanto que abelhas de tamanho correspondente à morfologia floral garantem um maior sucesso reprodutivo à planta visitada (Solís-Montero & Vallejo-Marín 2017).

Conhecer as espécies de abelhas presentes em localidades naturais é uma ferramenta de fundamental importância para dar suporte a estudos de polinização (baseados em dados de interação abelha-planta ou de síndromes de polinização) (Kovacs-Hostyanszki et al. 2019); para estudos baseados na ocorrência e distribuição geográfica das espécies (como estudos de biogeografia e filogeografia) (Sydenham et al. 2017); para análises de vulnerabilidade de espécies à mudanças globais (Giannini et al 2017); e principalmente, para o delineamento de estratégias para conservação e/ou restauração da biodiversidade, incluindo o monitoramento de longo prazo, tanto para áreas naturais quanto para áreas em processo de reabilitação (Zanella 2000, Gastauer et al. 2018).

Este trabalho teve por objetivo estruturar um banco de dados das espécies de abelhas que ocorrem na Floresta Nacional de Carajás. A estruturação desse banco de dados foi realizada com intuito de preencher as lacunas de conhecimento básico sobre as abelhas já coletadas nessa unidade de conservação. Além da lista das espécies são agregadas a esse banco de dados, informações sobre o tamanho corporal médio de cada espécie (baseado na distância intertegular) e informações relacionadas às interações previamente reportadas (Giannini et al. 2015) entre as abelhas presentes em Carajás e plantas de interesse agrícola para o Brasil.

2. MATERIAL E MÉTODOS

2.1. Área de estudo

A área de estudo foi a Floresta Nacional de Carajás (Fig. 1) (05°52'S–06°33'S, 49°53'W–50°45'W), localizada na porção sudeste do estado do Pará, região de domínio Fitogeográfico da Amazônia, onde são encontradas principalmente Formações Florestais, mas também porções de savana, campinaranas e campos rupestres de altitude (Viana et al. 2016). A FLONA de Carajás está situada a uma altitude de 700 a 900 metros acima do nível do mar. O clima nessa região pode ser caracterizado como tropical chuvoso com seca de inverno (AWi), segundo a classificação de Koppen, sendo marcado por uma precipitação anual de mais de 2000 mm e um período bem definido de seca que vai de Junho a Setembro. As temperaturas médias mensais são de 25° a 26°C, porém os valores absolutos registrados podem variar desde 15°C entre os meses de Julho a Outubro até 38°C nos demais meses do ano. A cobertura vegetal predominante é de Florestas Ombrófilas sempre verdes, porém são encontradas também áreas de vegetação estacionária com diferentes graus de deciduidade (Viana et al. 2016).

Serra Norte
Parauapebas

S e r r a d o s C a r a j á s

Serra do Tarzan

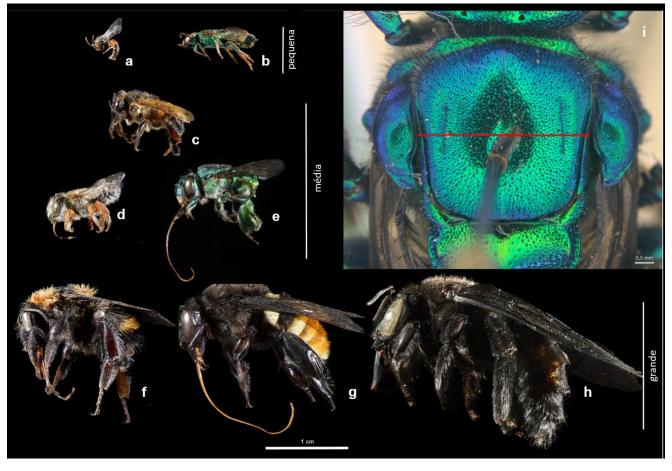
Serra da Bocaina

Serra do Carajás

Canaã dos Carajás

Figura 1 - Localização da Área de Estudo

Fonte: do autor


2.2. Obtenção da lista de espécies

A lista inicial de espécies de abelhas e de seus registros de ocorrência para a FLONA Carajás foi obtida a partir do banco de dados interno da Vale S.A, o bdbio. A seguir foram adicionados a essa lista dados obtidos de bases de dados públicas, disponíveis online (speciesLink e GBIF). Por último, para a validação da lista final, foram realizadas visitas às coleções entomológicas do Museu Paraense Emílio Goeldi (MPEG) e da Universidade Federal de Minas Gerais (UFMG) que não estão disponíveis online e que guardam o acervo das abelhas coletadas na FLONA de Carajás de 1981 a 2014.

2.3. Medida do tamanho corpóreo

O tamanho corpóreo para cada espécie foi estimado a partir da média da distância intertegular (ITD) (Fig. 2). A média foi calculada a partir da medida de 5 indivíduos para cada espécie com uso de um estereomicroscópio ótico equipado com uma lente ocular com retículo milimetrado, e é apresentada no banco de dados em milímetros.

Figura 2 - Abelhas de diferentes tamanhos corpóreos e medida da distância interteglar. (a) Vista Lateral de *Hylaeus tricolor* (Schrottky, 1906) (b) *Augochloropsis callichroa* (Cockerell, 1900) (c) *Melipona seminigra* Moure & Kerr, 1950 (d) *Megachile orba* Schrottky, 1913 (e) *Euglossa amazonica* Dressler, 1982 (f) *Bombus transversalis* (Olivier, 1789) (g) *Eulaema cingulata* (Fabricius, 1804) (h) *Xylocopa frontalis* (Olivier, 1789). Fotos de Fernanda Trancoso. (i) vista dorsal de uma abelha Euglossini com a medida do ITD (distância intertegular)

Fonte: do autor

2.4. Polinizadores agrícolas

Os dados de interação entre as abelhas presentes em Carajás e espécies de plantas de interesse agrícola foram obtidos a partir da base de dados de polinizadores de culturas agrícolas brasileiras (Giannini et al. 2015). Todas as abelhas presentes em Carajás e citadas por

Giannini et al. (2015) foram consideradas polinizadores agrícolas, independentemente da quantidade de culturas para as quais a abelha foi citada.

3. RESULTADOS

3.1 Lista de espécies

No total foram registradas 219 espécies de abelhas coletadas na FLONA de Carajás, representantes das cinco famílias de abelhas que ocorrem no Brasil (Andrenidae, Apidae, Coletidae, Halictidae e Megachilidae) (Anexo 1). A família com maior número de representantes foi Apidae, com 192 espécies, seguida por Halictidae com 15 espécies, Megachilidae com 8 e Andrenidae e Colletidae com 2 espécies. Essas espécies pertencem a 58 gêneros diferentes, sendo os gêneros com maior número de espécies: *Euglossa* com 40 espécies, *Centris* com 25 espécies e *Trigona* com 17 espécies. Dentre as abelhas sem ferrão, pertencentes a tribo Meliponini, 80 espécies foram coletadas na FLONA de Carajás.

3.2 Tamanho corpóreo

O comprimento da distância intertegular das abelhas medidas variou de 0.68 a 8.7 milímetros, sendo 86 espécies classificadas como pequenas (39%), 74 espécies classificadas como médias (33.7%) e 59 espécies classificadas como grandes (26.9%). As abelhas da tribo Meliponini estão classificadas como pequenas ou médias, sendo que 68 das 80 espécies (85%) foram classificadas como pequenas. Foram classificadas como médias as abelhas sem ferrão dos gêneros *Melipona* (8 espécies), *Cephalotrigona* (2 espécies) e 2 das 18 espécies do gênero *Trigona*.

3.3 Polinizadores agrícolas

Foram registradas 72 espécies (32.8%) de abelhas citadas como polinizadoras de culturas agrícolas na FLONA de Carajás. Dentre as abelhas polinizadoras agrícolas, 34 espécies são

abelhas de tamanho grande, 15 espécies são abelhas de tamanho médio e 23 espécies são abelhas de tamanho pequeno.

4. DISCUSSÃO

4.1. Lista de espécies

As 219 espécies de abelhas presentes na FLONA de Carajás representam cerca de 80% da fauna total de abelhas registradas na porção Oriental da Amazônia brasileira (Silveira et al. 2002, Moure 2008), coletadas em apenas uma localidade. Esse número de espécies pode estar relacionado ao fato de que a região foi intensamente amostrada durante os últimos 35 anos, por pesquisadores que realizaram atividades de coleta de dados biológicos relacionadas às atividades de mineração presentes em Carajás. Porém, a FLONA está localizada em um grande mosaico de unidades de conservação, que inclui a Área de Proteção Ambiental do Igarapé Gelado, a Reserva Biológica de Tapirapé, a Floresta Nacional do Tapirapé-Aquiri, a Floresta Nacional de Itacaiunas e o recém-criado (junho de 2017) Parque Nacional dos Campos Ferruginosos. O mosaico de unidades de conservação de Carajás é composto principalmente por áreas de floresta primária de altitude, caracterizadas por vegetação densa de floresta ombrófila, com dossel de mais de 30 metros de altitude. Além das áreas de floresta, porém, o mosaico apresenta áreas de savana, campinaranas e de campos ferruginosos de altitude, além de áreas onde há interação antrópica, tanto para a exploração de minério de ferro, bem como para a recuperação de áreas que foram degradadas pelas atividades de mineração (Viana et al. 2016, Gastauer et al. 2018). O mosaico inclui, portanto, uma grande heterogeneidade de habitats propícios a manutenção de uma rica diversidade biológica, como a encontrada para as abelhas (Coutinho et al. 2018, Miljanic et al. 2018).

Dentre os gêneros de abelhas com mais espécies encontradas na FLONA o gênero Euglossa inclui as abelhas polinizadoras de orquídeas, atraídas por compostos químicos produzidos pelas flores dessas plantas e que são facilmente coletadas com a utilização de isca de cheiro com essências artificiais (Dressler 1982). A diversidade dessas abelhas está diretamente relacionada a facilidade de coleta das mesmas, porém é necessário ressaltar a importância desse grupo, uma vez que muitas espécies de orquídeas dependem dos machos de Euglossini para garantir a sua polinização, enquanto que muitas fêmeas polinizam outras espécies vegetais (Ferreira-Caliman et al. 2018). As abelhas do gênero *Centris* possuem hábito de vida solitário e realizam coleta de óleos florais que são utilizados na construção de seus ninhos. Essas abelhas são de grande importância para a polinização de plantas das famílias Solanaceae, Caesalpinaceae, Malpighiaceae e Plantaginaceae (Martins et al. 2014). Já as abelhas do gênero *Trigona* possuem hábito de vida social, e costumam construir ninhos em diversos tipos de substratos, incluindo solo, ocos de árvores, cupinzeiros e ninhos expostos, tanto em estruturas naturais quanto antrópicas (Rasmussen & Camargo 2008). Ninhos de *Trigona* podem ter desde centenas a milhares de indivíduos e essas abelhas costumam ser consideradas como generalistas em redes de interação (Giannini et al. 2015b, tendo um importante papel na polinização de plantas agrícolas (Giannini et al. 2015a).

A tribo Meliponini é composta pelas abelhas nativas sem ferrão, abelhas de hábito de vida social, com ferrão atrofiado e baixa agressividade, características que fazem com que essas abelhas tenham grande potencial para que sejam manejadas pelo homem. Finalmente, as abelhas melíferas (*Apis mellifera* L.) consistem no principal grupo de abelhas utilizadas para a manejo e criação em caixas racionais, e são altamente generalistas em sua busca por recursos florais (Giannini et al. 2015b). Essas abelhas têm grande potencial para a produção de produtos apícolas como mel, pólen, cera, geopropólis, mas também possuem potencial para que sejam utilizadas para o provimento de serviços de polinização em áreas agrícolas, naturais ou em recuperação. Além disso essas abelhas podem ser utilizadas em programas de educação e conservação ambiental ou mesmo em atividades de recreação.

4.2. Tamanho corpóreo

A maioria das abelhas encontradas em Carajás é de tamanho pequeno, representando 39% do total de espécies. O grupo de abelhas com maior representatividade em Carajás pertence a Tribo Meliponini (abelhas sem ferrão), e 85% das abelhas desse grupo são pequenas. Apenas as abelhas sem ferrão do gênero *Melipona*, *Cephalotrigona* e apenas 2 espécies do gênero *Trigona* são de tamanho médio. Grande parte das abelhas de tamanho grande possuem hábito de vida solitário, sendo apenas a espécie *Bombus transversalis* de hábito de vida social. O tamanho corpóreo das abelhas está diretamente relacionado a sua capacidade de voo, portanto, abelhas menores são capazes de voar menores distâncias no ambiente (abelhas pequenas percorrem até 1km de raio de voo), diferente de abelhas médias (até 5km de raio de voo) e abelhas grande (até 30km de raio de voo) (Greenleaf et al 2007, Cariveau et al 2016). Assim, o número alto de abelhas pequenas pode estar relacionado às características intrínsecas da área. Como o mosaico de unidades de conservação de Carajás é predominantemente composto por vegetação primária, é provável que haja abundante oferta de recursos para a manutenção de espécies de abelhas, sem que elas precisem se deslocar por grandes distâncias em busca de alimento e locais de nidificação.

4.3. Polinizadores agrícolas

Pouco mais que 30% das espécies abelhas presentes em Carajás possui potencial para a polinização de áreas agrícolas. Dentre essas, mais de 45% são de tamanho grande, mostrando um maior potencial para o provimento do serviço de polinização agrícola uma vez que se deslocam por distâncias maiores. Essas espécies têm um importante papel também para agregar valor às áreas de unidades de conservação, uma vez que elas contribuem para a conservação de polinizadores e, consequentemente, com a manutenção dos serviços de polinização (Kissling et al. 2017).

5. CONCLUSÕES

O banco de dados das abelhas de Carajás é uma importante ferramenta que contribui para o delineamento de estratégias de conservação e de restauração na área de estudo. Conhecer as abelhas de Carajás é fundamental também para a resolução dos principais desafios para conservação da biodiversidade e para o desenvolvimento de políticas de desenvolvimento sustentável visando geração de renda para comunidades tradicionais, bem como manutenção de serviços e funções de ecossistema.

6. REFERÊNCIAS BIBLIOGRÁFICAS

ARMBRUSTER, W. S.; MUCHHALA, N. Associations between floral specialization and species diversity: Cause, effect, or correlation? **Evolutionary Ecology**, v. 23, n. 1, p. 159–179, 2009.

BEKKER, A. et al. Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic and Biospheric Processes. **Economic Geology**, p. 467–508, 2010.

CARIVEAU, D. P. et al. The allometry of bee proboscis length and its uses in ecology. **PLoS ONE**, v. 11, n. 3, p. 1–13, 2016.

CASTILLA, A. R. et al. Adding landscape genetics and individual traits to the ecosystem function paradigm reveals the importance of species functional breadth. **PNAS**, v. 114, n. 48, p. 201619271, 2017.

COUTINHO, J. G. da E.; GARIBALDI, L. A.; VIANA, B. F. The influence of local and landscape scale on single response traits in bees: A meta-analysis. **Agriculture, Ecosystems and Environment**, v. 256, n. June 2017, p. 61–73, 2018.

DRESSLER, R. L. Biology of the Orchid Bees (Euglossini). **Annual Review of Ecology and Systematics**, v. 13, n. 1, p. 373–394, 1982.

FERREIRA-CALIMAN, M. J. et al. Floral sources used by the orchid bee *Euglossa cordata* (Linnaeus, 1758) (Apidae: Euglossini) in an urban area of south-eastern Brazil. **Grana**, v. 57, n. 6, p. 471–480, 2018.

GARIBALDI, L. A. et al. Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. **Science**, v. 339, n. 6127, p. 1608–1611, 2013.

GASTAUER, M. et al. Mine land rehabilitation: Modern ecological approaches for more sustainable mining. **Journal of Cleaner Production**, v. 172, p. 1409–1422, 2018.

GIANNINI, T. C. et al. Crop pollinators in Brazil: a review of reported interactions. **Apidologie**, v. 46, n. 2, p. 209–223, 2015a.

GIANNINI, T. C. et al. Native and Non-Native Supergeneralist Bee Species Have Different Effects on Plant-Bee Networks. **PLoS One**, v. 10, p. e0137198, 2015b.

GIANNINI, T.C. et al. Projected climate change threatens pollinators and crop production in Brazil. **PLoS One**, v. 12, p. e0182274, 2017.

GOFF, S. H.; WARING, T. M.; NOBLET, C. L. Does Pricing Nature Reduce Monetary Support for Conservation?: Evidence From Donation Behavior in an Online Experiment. **Ecological Economics**, v. 141, p. 119–126, 2017.

GREENLEAF, S. S. et al. Bee foraging ranges and their relationship to body size. **Oecologia**, v. 153, n. 3, p. 589–596, 2007.

JACOBI, C. M.; DO CARMO, F. F.; VINCENT, R. D. Estudo Fitossociológico De Uma Comunidade Vegetal Sobre Canga Como Subsídio Para a Reabilitação De Áreas Mineradas No Quadrilátero Ferrífero, Mg. **Revista Arvore**, v. 32, n. 2, p. 345–353, 2008.

KATSUTA, N. et al. Major element distribution in Archean banded iron formation (BIF): Influence of metamorphic differentiation. **Journal of Metamorphic Geology**, v. 30, n. 5, p. 457–472, 2012.

KISSLING, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. **Biological Reviews**, v. 93, n. 1, p. 600–625, 2018.

KLEIJN, D. et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. **Nature Communications**, v. 6, n. May 2015, p. 7414, 2015.

KLEIN, A.-M. et al. Importance of pollinators in changing landscapes for world crops. **Proceedings of the Royal Society B: Biological Sciences**, v. 274, n. 1608, p. 303–313, 2007.

KLEIN, C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American

Mineralogist, v. 90, n. 10, p. 1473–1499, 2005.

KLEIN, C.; LADEIRA, E. A. Petrography and geochemistry of the least altered banded iron-formation of the Archean Carajás formation, northern Brazil. **Economic Geology**, v. 97, n. 3, p. 643–651, 2002.

KOVÁCS-HOSTYÁNSZKI, A. et al. The vulnerability of plant-pollinator communities to honeybee decline: A comparative network analysis in different habitat types. **Ecological Indicators**, v. 97, n. August 2018, p. 35–50, 2019.

MACHADO, I. F.; FIGUERÔA, S. F. M. 500 years of mining in Brazil: A brief review. **Resources Policy**, v. 27, n. 1, p. 9–24, 2001.

MARTINS, A. C.; MELO, G. A. R.; RENNER, S. S. The corbiculate bees arose from New World oil-collecting bees: Implications for the origin of pollen baskets. **Molecular Phylogenetics and Evolution**, v. 80, n. 1, p. 88–94, 2014.

MATIAS, D. M. S. et al. A review of ecosystem service benefits from wild bees across social contexts. **Ambio**, v. 46, n. 4, p. 456–467, 2017.

MILJANIC, A. S. et al. Bee communities in forestry production landscapes: interactive effects of local-level management and landscape context. **Landscape Ecology**, p. 1–18, 2018.

NAGANO, Y. et al. Changes in pollinator fauna affect altitudinal variation of floral size in a bumblebee-pollinated herb. **Ecology and Evolution**, v. 4, n. 17, p. 3395–3407, 2014.

NEPSTAD, D. C. et al. Interactions among Amazon land use, forests and climate: Prospects for a near-term forest tipping point. **Philosophical Transactions of the Royal Society B: Biological Sciences**, v. 363, n. 1498, p. 1737–1746, 2008.

OLLERTON, J. Pollinator Diversity: Distribution, Ecological Function, and Conservation. **Annual Review of Ecology, Evolution, and Systematics**, v. 48, n. 1, p. annurev-ecolsys-110316-022919, 2017.

POTTS, S. G. et al. Safeguarding pollinators and their values to human well-being. **Nature**, v. 540, n. 7632, p. 220–229, 2016.

RADER, R. et al. The winners and losers of land use intensification: Pollinator community disassembly is non-random and alters functional diversity. **Diversity and Distributions**, v.

20, n. 8, p. 908–917, 2014.

RASMUSSEN, C.; CAMARGO, J. M. F. Original article A molecular phylogeny and the evolution of nest architecture and behavior in Trigona s . s . (Hymenoptera: Apidae: Meliponini). **Apidologie**, v. 39, n. 1, p. 102–118, 2008.

ROSIÈRE, C. A.; CHEMALE JR, F. Brazilian iron formations and their geological setting. **Revista Brasileira de Geociências**, v. 30, n. 2, p. 274–278, 2000.

SARAIVA, D. D. et al. How effective are protected areas in conserving tree taxonomic and phylogenetic diversity in subtropical Brazilian Atlantic Forests? **Journal for Nature Conservation**, v. 42, n. January, p. 28–35, 2018.

SKIRYCZ, A. et al. Canga biodiversity, a matter of mining. **Frontiers in Plant Science**, v. 5, n. November, p. 1–9, 2014.

SOLÍS-MONTERO, L.; VALLEJO-MARÍN, M. Does the morphological fit between flowers and pollinators affect pollen deposition? An experimental test in a buzz-pollinated species with anther dimorphism. **Ecology and Evolution**, v. 7, n. 8, p. 2706–2715, 2017.

SYDENHAM, M. A. K. et al. Community level niche overlap and broad scale biogeographic patterns of bee communities are driven by phylogenetic history. **Journal of Biogeography**, v. 45, n. 2, p. 461–472, 2018.

VIANA, P.L., et al. Flora das cangas da Serra dos Carajás, Pará, Brasil: história, área de estudos e metodologia. **Rodriguesia** 67, 2016. doi: 10.1590/2175-7860201667557.

WINFREE, R.; GROSS, B. J.; KREMEN, C. Valuing pollination services to agriculture. **Ecological Economics**, v. 71, n. 1, p. 80–88, 2011.

ZANELLA, F. C. V. The bees of the catinga (Hymenoptera, Apoidea, Apiformes): a species list and comparative notes regarding their distribution. **Apidologie**, v. 31, p. 579–592, 2000.

Anexo 1 - Lista das espécies de abelhas da Floresta Nacional de Carajás

ID.	FAMILY	TRIBE	GENUS	SPECIFIC EPITHET	SCIENTIFIC NAME AUTHORSHIP	BODY SIZE CLASS	ITD MEASURE D	LOCATION OF MEASURED SPECIMEN	CROP POLLINATO R
1	Andrenidae	Calliopsini	Acamptopoeum	prinii	(Holmberg 1884)	small	2	MPEG	yes
2	Apidae	Ericrocidini	Acanthopus	palmatus	(Olivier 1789)	large	5	MPEG	no
3	Apidae	Euglossini	Aglae	caerulea	Lepeletier & Serville 1825	large	5	MPEG	no
4	Apidae	Emphorini	Alepidosceles	imitatrix	(Schrottky 1909)	mediu	2.46	UFMG	no
5	Apidae	Emphorini	Ancyloscelis	apiformis	(Fabricius 1793)	m mediu m	3.5	MPEG	no
6	Apidae	Meliponini	Aparatrigona	impunctata	(Ducke 1916)	small	1.6	MPEG	yes
7	Apidae	Apini	Apis	mellifera	Linnaeus 1758	mediu m	2.8	MPEG	yes
8	Halictidae	Augochlorini	Augochlora	neivai	(Moure 1940)	small	1.3	UFMG	no
9	Halictidae	Augochlorini	Augochloropsis	callichroa	(Cockerell 1900)	small	1.92	UFMG	yes
10	Halictidae	Augochlorini	Augochloropsis	hebescens	(Smith 1879)	mediu	2.86	UFMG	no
						m			
11	Halictidae	Augochlorini	Augochloropsis	smithiana	(Cockerell 1900)	small	2.18	UFMG	no
12	Halictidae	Augochlorini	Augochloropsis	wallacei	(Cockerell 1900)	small	1.95	UFMG	yes
13	Apidae	Bombini	Bombus	brevivillus	Franklin 1913	mediu m	3.8	MPEG	yes
14	Apidae	Bombini	Bombus	transversalis	(Olivier 1789)	large	4.7	MPEG	yes
15	Apidae	Centridini	Centris	aenea	Lepeletier 1841	large	4.7	MPEG	yes
16	Apidae	Centridini	Centris	collaris	Lepeletier 1841	large	6.9	UFMG	yes
17	Apidae	Centridini	Centris	dentata	Smith 1854	large	5.5	MPEG	no
18	Apidae	Centridini	Centris	denudans	Lepeletier 1841	large	7	MPEG	yes
19	Apidae	Centridini	Centris	dorsata	Lepeletier 1841	large	6.76	UFMG	no
20	Apidae	Centridini	Centris	ferruginea	Lepeletier 1841	large	6.75	MPEG	yes
21	Apidae	Centridini	Centris	flavifrons	(Fabricius 1775)	large	5.52	UFMG	yes
22	Apidae	Centridini	Centris	fuscata	Lepeletier 1841	large	4.76	UFMG	yes
23	Apidae	Centridini	Centris	longimana	Fabricius 1804	large	6.24	UFMG	yes
24	Apidae	Centridini	Centris	lutea	Friese 1899	large	5.38	UFMG	yes
25	Apidae	Centridini	Centris	maranhensis	Ducke 1910	large	7.5	MPEG	yes
26	Apidae	Centridini	Centris	nobilis	Westwood 1840	large	8.1	MPEG	no
27	Apidae	Centridini	Centris	obsoleta	Lepeleier 1841	large	6.48	UFMG	yes
28	Apidae	Centridini	Centris	pachysoma	Cockerell 1919	large	7.04	UFMG	no
29	Apidae	Centridini	Centris	plumipes	Smith 1854	large	5.85	UFMG	no
30	Apidae	Centridini	Centris	poecila	Lepeletier 1841	large	4.34	UFMG	no
31	Apidae	Centridini	Centris	quadrimaculata	Packard 1869	large	5.8	UFMG	no
32	Apidae	Centridini	Centris	rhodoprocta	Moure & Seabra 1960	mediu	3	MPEG	yes
33	Apidae	Centridini	Centris	scopipes	Friese 1899	m large	7.7	MPEG	yes
34	Apidae	Centridini	Centris		Smith 1874	-	6.7	MPEG	
35	Apidae	Centridini	Centris	tarsata terminata	Smith 1874	large mediu	3.8	UFMG	yes
36	Apidae	Centridini	Centris	trigonoides	Lepeletier 1841	m mediu	2.98	UFMG	yes

ID.	FAMILY	TRIBE	GENUS	SPECIFIC EPITHET	SCIENTIFIC NAME AUTHORSHIP	BODY SIZE CLASS	ITD MEASURE D	LOCATION OF MEASURED SPECIMEN	CROP POLLINATO R
						m			
37	Apidae	Centridini	Centris	varia	(Erichson 1849)	large	4.2	MPEG	yes
38	Apidae	Centridini	Centris	vittata	Lepeletier 1841	large	5.3	MPEG	yes
39	Apidae	Centridini	Centris	americana	(Klug 1910)	large	8.4	UFMG	yes
40	Apidae	Meliponini	Cephalotrigona	capitata	(Smith 1854)	mediu	2.3	MPEG	yes
						m			
41	Apidae	Meliponini	Cephalotrigona	femorata	(Smith 1854)	mediu m	2.38	UFMG	no
42	Megachilidae	Megachilini	Coelioxys	clypeata	Smith 1879	mediu m	2.5	UFMG	no
43	Megachilidae	Megachilini	Coelioxys	tolteca	Cresson 1878	mediu m	2.625	UFMG	no
44	Colletidae	Colletini	Colletes	natronalitanus	Dalla Torre 1896	small	1.98	UFMG	no
	Megachilidae	Anthidiini	Dicranthidium	petropolitanus arenarium	(Ducke 1907)	small	1.56	UFMG	no
45									no
46	Apidae	Meliponini	Dolichotrigona	longitarsis	(Ducke 1916)	small	1	MPEG	no
47	Megachilidae	Anthidiini	Epanthidium	tigrinum	(Schrottky 1905)	mediu m	2.58	UFMG	no
48	Apidae	Centridini	Epicharis	affinis	Smith 1974	large	4.72	UFMG	yes
49	Apidae	Centridini	Epicharis	albofasciata	Smith 1974	mediu m	3.9	UFMG	yes
50	Apidae	Centridini	Epicharis	flava	Friese 1900	large	5.4	MPEG	yes
51	Apidae	Centridini	Epicharis	rustica	(Olivier 1789)	large	5.2	MPEG	yes
52	Apidae	Euglossini	Eufriesea	auriceps	(Friese 1899)	large	5.22	UFMG	no
53	Apidae	Euglossini	Eufriesea	concova	(Friese 1899)	large	5.4	MPEG	no
54	Apidae	Euglossini	Eufriesea	eburneocincta	(Kimsey 1977)	large	5.68	UFMG	no
55	Apidae	Euglossini	Eufriesea	elegans	(Lepeletier 1841)	large	6.7	MPEG	no
56	Apidae	Euglossini	Eufriesea	flaviventris	(Friese 1899)	large	5.3	MPEG	yes
57	Apidae	Euglossini	Eufriesea	fuscatra	(Moure 1999)	large	5.3	UFMG	no
58	Apidae	Euglossini	Eufriesea	ornata	(Mocsáry 1896)	large	7	MPEG	no
59	Apidae	Euglossini	Eufriesea	pulchra	(Smith 1854)	large	5.9	MPEG	no
60	Apidae	Euglossini	Eufriesea	superba	(Hoffmannsegg 1817)	large	6.2	MPEG	no
61	Apidae	Euglossini	Eufriesea	surinamensis	(Linnaeus 1758)	large	5.66	MPEG	yes
62	Apidae	Euglossini	Euglossa	allosticta	Moure 1969	mediu m	3.194	MPEG	no
63	Apidae	Euglossini	Euglossa	amazonica	Dressler 1982	mediu m	3.3	MPEG	no
64	Apidae	Euglossini	Euglossa	analis	Westwood 1840	mediu m	3.2	MPEG	no
65	Apidae	Euglossini	Euglossa	augaspis	Dressler 1982	mediu m	3.1	MPEG	no
66	Apidae	Euglossini	Euglossa	avicula	Dressler 1982	mediu m	3.5	MPEG	no
67	Apidae	Euglossini	Euglossa	azureoviridis	Friese 1930	mediu m	3.32	UFMG	no

ID.	FAMILY	TRIBE	GENUS	SPECIFIC EPITHET	SCIENTIFIC NAME AUTHORSHIP	BODY SIZE CLASS	ITD MEASURE D	LOCATION OF MEASURED SPECIMEN	CROP POLLINATO R
68	Apidae	Euglossini	Euglossa	bidentata	Dressler 1982	mediu m	3.5	MPEG	no
69	Apidae	Euglossini	Euglossa	chalybeata	Friese 1925	mediu m	3.7	MPEG	no
70	Apidae	Euglossini	Euglossa	chlorina	Dressler 1982	mediu m	3.4	MPEG	no
71	Apidae	Euglossini	Euglossa	cognata	Moure 1970	large	4	MPEG	no
72	Apidae	Euglossini	Euglossa	cordata	(Linnaeus 1758)	mediu m	3.44	UFMG	no
73	Apidae	Euglossini	Euglossa	crassipunctata	Moure 1968	mediu m	3	MPEG	no
74	Apidae	Euglossini	Euglossa	deceptrix	Moure 1969	mediu m	3.5	MPEG	no
75	Apidae	Euglossini	Euglossa	decorata	Smith 1874	mediu m	3.5	MPEG	no
76	Apidae	Euglossini	Euglossa	despecta	Moure 1968	mediu m	3.5	MPEG	no
77	Apidae	Euglossini	Euglossa	fimbriata	Moure 1969	mediu m	3.3	MPEG	no
78	Apidae	Euglossini	Euglossa	gaianii	Dressler 1982	mediu m	3.4	MPEG	no
79	Apidae	Euglossini	Euglossa	hemichlora	Cockerell 1917	mediu m	3.32	UFMG	no
80	Apidae	Euglossini	Euglossa	heterosticta	Moure 1968	mediu m	3.25	MPEG	no
81	Apidae	Euglossini	Euglossa	ignita	Smith 1874	mediu m	3.7	MPEG	no
82	Apidae	Euglossini	Euglossa	imperialis	Cockerell 1922	large	4.1	MPEG	no
83	Apidae	Euglossini	Euglossa	intersecta	Latreille 1817	large	5	MPEG	yes
84	Apidae	Euglossini	Euglossa	ioprosopa	Dressler 1982	mediu m	3.68	MPEG	no
85	Apidae	Euglossini	Euglossa	iopyrrha	Dressler 1982	mediu m	3.7	MPEG	no
86	Apidae	Euglossini	Euglossa	juremae	Moure 1989	mediu m	3.66	MPEG	no
87	Apidae	Euglossini	Euglossa	liopoda	Dressler 1982	mediu m	3	MPEG	no
88	Apidae	Euglossini	Euglossa	magnipes	Dressler 1982	mediu m	3.4	UFMG	no
89	Apidae	Euglossini	Euglossa	magnipes	Dressler 1982	mediu m	3.4	MPEG	no
90	Apidae	Euglossini	Euglossa	mixta	Friese 1899	mediu m	3.7	MPEG	no
91	Apidae	Euglossini	Euglossa	modestior	Dressler 1982	mediu	3.3	MPEG	no

ID.	FAMILY	TRIBE	GENUS	SPECIFIC EPITHET	SCIENTIFIC NAME AUTHORSHIP	BODY SIZE CLASS	ITD MEASURE D	LOCATION OF MEASURED SPECIMEN	CROP POLLINATO R
						m			
92	Apidae	Euglossini	Euglossa	mourei	Dressler 1982	mediu m	3.4	MPEG	no
93	Apidae	Euglossini	Euglossa	occidentalis	Roubik 2004	mediu	3.74	UFMG	no
94	Apidae	Euglossini	Euglossa	orellana	Roubik 2006	m mediu	3.6	MPEG	no
05	A = 1.1 = -	Participi	F 1		C / 1044	m	4.5	MDEC	
95	Apidae	Euglossini	Euglossa	piliventris	Guérin 1844	large	4.5	MPEG	no
96	Apidae	Euglossini	Euglossa	pleosticta	Dressler 1982	mediu m	3.48	MPEG	no
97	Apidae	Euglossini	Euglossa	prasina	Dressler 1982	mediu m	3.2	MPEG	no
98	Apidae	Euglossini	Euglossa	retroviridis	Dressler 1982	mediu	3.45	MPEG	no
99	Apidae	Euglossini	Euglossa	securigera	Dressler 1982	m mediu m	3.6	MPEG	yes
100	Apidae	Euglossini	Euglossa	townsendi	Cockerell 1904	mediu	3.2	MPEG	no
101	Apidae	Euglossini	Euglossa	variabilis	Friese 1899	m mediu m	3.5	MPEG	no
102	Apidae	Euglossini	Eulaema	bombiformis	(Packard 1869)	large	7.5	MPEG	yes
103	Apidae	Euglossini	Eulaema	cingulata	(Fabricius 1804)	large	6.3	MPEG	yes
104	Apidae	Euglossini	Eulaema	meriana	(Olivier 1789)	large	7	MPEG	yes
105	Apidae	Euglossini	Eulaema	mocsaryi	(Friese 1899)	large	5.44	MPEG	yes
106	Apidae	Euglossini	Eulaema	nigrita	Lepeletier 1841	large	5.4	MPEG	yes
107	Apidae	Euglossini	Eulaema	pseudocingulata	Oliveira 2006	large	6	MPEG	no
108	Apidae	Euglossini	Eulaema	tenuifasciata	(Friese 1925)	large	6.6	MPEG	no
109	Apidae	Euglossini	Exaerete	frontalis	(Guérin 1844)	large	5.6	MPEG	no
110	Apidae	Euglossini	Exaerete	smaragdina	(Guérin 1844)	large	4.5	MPEG	yes
111	Apidae	Exomalopsini	Exomalopsis	analis	Spinola 1853	small	1.8	MPEG	yes
112	Apidae	Exomalopsini	Exomalopsis	auropilosa	Spinola 1855	small	1.64	UFMG	yes
113	Apidae	Exomalopsini	Exomalopsis	subtilis	Timberlake 1980	small	1.82	UFMG	no
114	Apidae	Eucerini	Florilegus	festivus	(Smith 1854)	mediu m	2.7	UFMG	no
115	Apidae	Meliponini	Frieseomelitta	doederleini	(Friese 1900)	small	1.4	MPEG	yes
116	Apidae	Meliponini	Frieseomelitta	flavicornis	(Fabricius 1798)	small	1.3	MPEG	no
117	Apidae	Meliponini	Frieseomelitta	longipes	(Smith 1854)	small	1.2	MPEG	yes
118	Apidae	Meliponini	Frieseomelitta	longipes	(Smith 1854)	small	1.2	MPEG	no
119	Apidae	Meliponini	Frieseomelitta	portoi	(Friese 1900)	small	0.9	MPEG	no
120	Apidae	Meliponini	Frieseomelitta	silvestrii	(Friese 1902)	small	1.05	UFMG	no
121	Apidae	Meliponini	Frieseomelitta	varia	(Lepeletier 1836)	small	1.34	UFMG	yes
122	Apidae	Meliponini	Geotrigona	aequinoctialis	(Ducke 1925)	small	1.58	UFMG	no
123	_	-	-	•					
	Apidae	Meliponini	Geotrigona	mattogrossensis	(Ducke 1925)	small	1.6	UFMG	no
124	Colletidae	Hylaeini	Hylaeus	tricolor	(Schrottky 1906)	small	0.9	UFMG	yes

ID.	FAMILY	TRIBE	GENUS	SPECIFIC EPITHET	SCIENTIFIC NAME AUTHORSHIP	BODY SIZE CLASS	ITD MEASURE D	LOCATION OF MEASURED SPECIMEN	CROP POLLINATO R
125	Apidae	Meliponini	Lestrimellita	ciliata	Marchi & Melo 2006	small	1.6	MPEG	no
126	Apidae	Meliponini	Lestrimellita	limao	(Smith 1863)	small	1.6	MPEG	no
127	Apidae	Meliponini	Lestrimellita	monodonta	Camargo & Moure 1989	small	1.8	UFMG	no
128	Apidae	Meliponini	Lestrimellita	rufa	(Friese 1903)	small	1.9	MPEG	no
129	Apidae	Meliponini	Lestrimellita	rufipes	(Friese 1903)	small	1.6	MPEG	no
130	Apidae	Meliponini	Lestrimellita	spinosa	Marchi & Melo 2006	small	1.7	UFMG	no
131	Apidae	Meliponini	Leurotrigona	muelleri	(Friese 1900)	small	0.86	MPEG	no
132	Apidae	Meliponini	Leurotrigona	pusilla	Moure & Camargo 1988	small	0.8	MPEG	yes
133	Megachilidae	Lithurgini	Lithurgus	huberi	Ducke 1907	mediu	3.06	UFMG	no
						m			
134	Apidae	Tapinotaspidin	Lophopedia	pygmaea	(Schrottky 1902)	small	1.98	UFMG	no
		i							
135	Megachilidae	Megachilini	Megachile	iheringi	Schrottky 1913	mediu	3.45	UFMG	no
						m			
136	Megachilidae	Megachilini	Megachile	orba	Schrottky 1913	mediu	2.74	UFMG	no
						m			
137	Megachilidae	Megachilini	Megachile	rubricata	Smith 1853	mediu	3.28	UFMG	no
						m			
138	Halictidae	Augochlorini	Megalopta	aegis	(Vachal 1904)	mediu	2.8	MPEG	no
150	Timotidae	7 Aug o c mor m	Megalopia	46815	(**************************************	m	2.0	20	
139	Halictidae	Augochlorini	Magalonta	amoana	(Spinola 1853)	mediu	2.6	MPEG	Vac
139	Hancidae	Augocinoriii	Megalopta	amoena	(Spinola 1855)		2.0	MILO	yes
110					0.161.0014	m) from a	
140	Halictidae	Augochlorini	Megalopta	mura	Santos & Melo 2014	mediu	2.3	MPEG	no
						m			
141	Halictidae	Augochlorini	Megalopta	sodalis	(Vachal 1904)	mediu	2.8	MPEG	yes
						m			
142	Halictidae	Augochlorini	Megalopta	yanomami	Santos & Melo 2014	mediu	2.5	MPEG	no
						m			
143	Halictidae	Augochlorini	Megaloptidia	nocturna	(Friese 1926)	mediu	2.6	MPEG	no
						m			
144	Apidae	Meliponini	Melipona	amazonica	Schulz 1905	mediu	2.2	MPEG	no
						m			
145	Apidae	Meliponini	Melipona	fasciculata	Smith 1854	mediu	3.1	MPEG	yes
	•	•				m			
146	Apidae	Meliponini	Melipona	flavolineata	Friese 1900	mediu	2.6	MPEG	yes
140	ripidae	Wenponini	менрона	javoineaa	These 1900		2.0	MILO	yes
1.47		M.P	14 P	6.7.	T 12 1000	m "	2.0	MDEG	
147	Apidae	Meliponini	Melipona	fuliginosa	Lepeletier 1836	mediu	3.9	MPEG	no
						m			
148	Apidae	Meliponini	Melipona	interrupta	Latreille 1811	mediu	3	MPEG	no
						m			
149	Apidae	Meliponini	Melipona	melanoventer	Schwarz 1932	mediu	3	MPEG	yes
						m			
150	Apidae	Meliponini	Melipona	puncticollis	Friese 1902	mediu	2.5	MPEG	no
						m			

ID.	FAMILY	TRIBE	GENUS	SPECIFIC EPITHET	SCIENTIFIC NAME AUTHORSHIP	BODY SIZE CLASS	ITD MEASURE D	LOCATION OF MEASURED SPECIMEN	CROP POLLINATO R
151	Apidae	Meliponini	Melipona	seminigra	Moure & Kerr 1950	mediu	3	MPEG	yes
				pernigra		m			
152	Apidae	Meliponini	Nannotrigona	minuta	(Lepeletier 1836)	small	1.2	MPEG	no
153	Apidae	Meliponini	Nannotrigona	punctata	(Smith 1854)	small	1.27	MPEG	yes
154	Apidae	Meliponini	Nannotrigona	schultzei	(Friese 1901)	small	1.26	MPEG	no
155	Halictidae	Augochlorini	Neocorynura	cuprifrons	(Smith 1879)	small	1.9	UFMG	no
156	Andrenidae	Oxaeini	Oxaea	flavescens	Klug 1807	large	5.12	UFMG	yes
157	Apidae	Meliponini	Oxytrigona	ignis	Camargo 1984	small	1.4	MPEG	no
158	Apidae	Meliponini	Oxytrigona	tataira	(Smith 1863)	small	1.4	MPEG	no
159	Apidae	Tapinotaspidin	Paratetrapedia	connexa	(Vachal 1909)	mediu	2.2	MPEG	no
		i				m			
160	Apidae	Tapinotaspidin i	Paratetrapedia	lineata	(Spinola 1853)	small	1.85	UFMG	no
161	Apidae	Tapinotaspidin i	Paratetrapedia	vogeli	Aguiar & Melo 2011	small	1.56	UFMG	no
162	Apidae	Meliponini	Paratrigona	incerta	Camargo & Moure 1994	small	1.2	MPEG	no
163	Apidae	Meliponini	Paratrigona	peltata	(Spinola 1853)	small	1.2	MPEG	yes
164	Apidae	Meliponini	Paratrigona	prosopiformis	(Gribodo 1893)	small	1.5	MPEG	no
165	Apidae	Meliponini	Partamona	ailyae	Camargo 1980	small	1.8	MPEG	no
.66	-	-		combinata	•		1.7	MPEG	
	Apidae	Meliponini	Partamona		Pedro & Camargo 2003	small			no
167	Apidae	Meliponini	Partamona	gregaria	Pedro & Camargo 2003	small	1.75	UFMG	no
168	Apidae	Meliponini	Partamona	mulata	Moure 1980	small	1.64	UFMG	no
169	Apidae	Meliponini	Partamona	pearsoni	(Schwarz 1938)	small	1.5	MPEG	no
170	Apidae	Meliponini	Partamona	testacea	(Klug 1807)	small	1.5	MPEG	no
171	Apidae	Meliponini	Partamona	vicina	Camargo 1980	small	1.5	MPEG	no
172	Apidae	Meliponini	Plebeia	alvarengai	Moure 1994	small	1.03	MPEG	no
173	Apidae	Meliponini	Plebeia	minima	(Gribdo 1893)	small	0.9	MPEG	yes
174	Halictidae	Augochlorini	Pseudaugochlo ra	flammula	Almeida 2008	small	2.18	UFMG	no
175	Halictidae	Augochlorini	Pseudaugochlo ra	graminea	(Fabricius 1804)	mediu m	2.32	UFMG	yes
76	Apidae	Meliponini	Ptilotrigona	lurida	(Smith 1854)	small	1.6	MPEG	no
77	Halictidae	Augochlorini	Rhinocorynura	briseis	(Smith 1879)	small	1.46	UFMG	no
78	Apidae	Meliponini	Scaptotrigona	polysticta	(Moure 1950)	small	2	MPEG	no
.79	Apidae	Meliponini	Scaptotrigona	postica	(Latreille 1807)	small	1.7	MPEG	yes
180	Apidae	Meliponini	Scaptotrigona	xanthotricha	Moure 1950	small	1.8	MPEG	no
181	Apidae	Meliponini	Scaura	latitarsis	(Friese 1900)	small	1	MPEG	no
182	Apidae	Meliponini	Schwarzula	timida	(Silvestri 1902)	small	1.02	UFMG	no
183	Apidae	Tapinotaspidin i	Tapinotaspoide s	serraticornis	(friese 1899)	small	2.1	UFMG	no
184	Apidae	Meliponini	Tetragona	clavipes	(Fabricius 1804)	small	1.5	MPEG	yes
185	Apidae	Meliponini	Tetragona	dorsalis	(Smith 1854)	small	1.14	MPEG	no
	-	-							
.86	Apidae	Meliponini	Tetragona	goettei	(Friese 1900)	small	1.4	UFMG	no
187	Apidae	Meliponini	Tetragonisca	angustula	(Latreille 1811)	small	1	MPEG	yes

ID.	FAMILY	TRIBE	GENUS	SPECIFIC EPITHET	SCIENTIFIC NAME AUTHORSHIP	BODY SIZE CLASS	ITD MEASURE D	LOCATION OF MEASURED SPECIMEN	CROP POLLINATO R
188	Apidae	Tetrapediini	Tetrapedia	albodecorata	Moure 1999	mediu	2.2	MPEG	no
						m			
189	Apidae	Meliponini	Trigona	albipennis	Almeida 1995	small	1.492	MPEG	no
190	Apidae	Meliponini	Trigona	amazonensis	(Ducke 1916)	small	1.9	MPEG	no
191	Apidae	Meliponini	Trigona	branneri	Cockerell 1912	small	1.7	MPEG	yes
192	Apidae	Meliponini	Trigona	braueri	Friese 1900	small	1.53	UFMG	no
193	Apidae	Meliponini	Trigona	chanchamayoens	Schwars 1948	small	1.3	MPEG	no
				is					
194	Apidae	Meliponini	Trigona	cilipes	(Fabricius 1804)	small	1.58	UFMG	no
195	Apidae	Meliponini	Trigona	dallatorreana	Friese 1900	small	1.7	MPEG	no
196	Apidae	Meliponini	Trigona	dimidiata	Smith 1854	small	2	MPEG	no
197	Apidae	Meliponini	Trigona	fulviventris	Guérin 1844	small	1.3	MPEG	yes
198	Apidae	Meliponini	Trigona	fuscipennis	Friese 1900	small	1.5	MPEG	yes
199	Apidae	Meliponini	Trigona	guianae	Cockerell 1910	small	1.2	MPEG	yes
200	Apidae	Meliponini	Trigona	hypogea	Silvestri 1902	small	1.35	MPEG	no
201	Apidae	Meliponini	Trigona	lacteipennis	Friese 1900	small	1.57	MPEG	no
202	Apidae	Meliponini	Trigona	pallens	(Fabricius 1798)	small	1.4	MPEG	yes
203	Apidae	Meliponini	Trigona	recursa	Smith 1863	small	1.3	MPEG	yes
204	Apidae	Meliponini	Trigona	sesquipedalis	Almeida 1984	mediu	2.2	MPEG	no
						m			
205	Apidae	Meliponini	Trigona	truculenta	Almeida 1984	mediu	2.5	MPEG	no
						m			
206	Apidae	Meliponini	Trigona	williana	Friese 1900	small	1.9	MPEG	no
207	Apidae	Meliponini	Trigonisca	dobzhanskyi	(Moure 1960)	small	0.85	UFMG	no
208	Apidae	Meliponini	Trigonisca	extrema	Albuquerque & Camargo 2007	small	0.8	UFMG	no
209	Apidae	Meliponini	Trigonisca	fraissei	(Friese 1901)	small	0.8	MPEG	no
210	Apidae	Meliponini	Trigonisca	graeffei	(Friese 1900)	small	0.75	MPEG	no
211	Apidae	Meliponini	Trigonisca	pediculana	(Fabricius 1804)	small	0.74	UFMG	no
212	Apidae	Meliponini	Trigonisca	variegatifrons	Albuquerque & Camargo 2007	small	0.68	UFMG	no
213	Apidae	Xylocopini	Xylocopa	aurulenta	(Fabricius 1804)	large	5.7	MPEG	yes
214	Apidae	Xylocopini	Xylocopa	carbonaria	Smith 1854	large	5.1	MPEG	no
215	Apidae	Xylocopini	Xylocopa	frontalis	(Olivier 1789)	large	8.7	MPEG	yes
216	Apidae	Xylocopini	Xylocopa	grisescens	Lepeletier 1841	large	7.5	MPEG	yes
217	Apidae	Xylocopini	Xylocopa	muscaria	(Fabricius 1775)	large	4.72	UFMG	yes
218	Apidae	Xylocopini	Xylocopa	suspecta	Moure & Camargo 1988	large	7.02	MPEG	yes
219	Apidae	Xylocopini	Xylocopa	viridis	Smith 1854	large	4.5	MPEG	no
		т-ут-горин	,pu			90			

Fonte: do autor