

MESTRADO PROFISSIONAL USO SUSTENTÁVEL DE RECURSOS NATURAIS EM REGIÕES TROPICAIS

AMANDA MANUELLY DA SILVA OLIVEIRA

ESTRUTURA E DIVERSIDADE TAXONÔMICA DAS COMUNIDADES MICROBIANAS EM CAVIDADES FERRUGINOSAS DA FLONA DE CARAJÁS

Belém / PA 2021 INSTITUTO TECNOLÓGICO VALE

AMANDA MANUELLY DA SILVA OLIVEIRA

ESTRUTURA E DIVERSIDADE TAXONÔMICA DAS COMUNIDADES MICROBIANAS EM CAVIDADES FERRUGINOSAS DA FLONA DE CARAJÁS

Dissertação apresentada como requisito parcial para obtenção do título de Mestre em Ciências Ambientais, do Programa de Mestrado Profissional em Uso Sustentável de Recursos Naturais em Regiões Tropicais, do Instituto Tecnológico Vale Desenvolvimento Sustentável (ITV DS).

Orientador: Dr. José Augusto Pires Bitencourt Coorientadora: Dra. Gisele Lopes Nunes

Belém / PA 2021

Dados Internacionais de Catalogação na Publicação (CIP)

 Oliveira, Amanda Manuelly da Silva Estrutura e diversidade taxonômica das comunidades microbianas em cavidades ferruginosas da Flona de Carajás / Amanda Manuelly da Silva Oliveira, Gisele Lopes Nunes, José Augusto Pires Bitencourt – Belém, 2021. 113 f. : il.

> Dissertação (Mestrado em Uso Sustentável de Recursos Naturais em Regiões Tropicais) – Instituto Tecnológico Vale, 2021. Orientador: Dr. José Augusto Pires Bitencourt. Coorientaora: Dra. Gisele Lopes Nunes

> 1. Taxonomia - Estrutura. 2. Taxonomia - Diversidade. 3. Microbiologia. 4. Cavidades ferruginosas. I. Nunes, Gisele Lopes. II. Bitencourt, José Augusto Pires. III. Título

CDD 23. ed. 581.46098115

Bibliotecária responsável: Nisa Gonçalves / CRB 2 - 525

AMANDA MANUELLY DA SILVA OLIVEIRA

ESTRUTURA E DIVERSIDADE TAXONÔMICA DAS COMUNIDADES MICROBIANAS EM CAVIDADES FERRUGINOSAS DA FLONA DE CARAJÁS

Dissertação apresentada como requisito parcial para obtenção do título de Mestre em Ciências Ambientais, do Programa de Mestrado Profissional em Uso Sustentável de Recursos Naturais em Regiões Tropicais, do Instituto Tecnológico Vale Desenvolvimento Sustentável (ITV DS).

Data de aprovação:

Banca examinadora:

José Augusto Pires Bitencourt Orientador (a) – Doutor. Instituto Tecnológico Vale (ITV-DS)

Gisele Lopes Nunes Co -orientador (a) – Doutora. Instituto Tecnológico Vale (ITV-DS)

Rafael Borges da Silva Valadares Membro Interno – Doutor. Instituto Tecnológico Vale (ITV-DS)

Rafael Azevedo Baraúna Membro Externo – Doutor. Universidade Federal do Pará (UFPA)

DEDICATÓRIA

À Maria Conceição da Silva por ter me acolhido como filha e ser esta mulher pela qual só tenho amor e uma profunda admiração.

AGRADECIMENTOS

Ao Instituto Tecnológico Vale Desenvolvimento Sustentável por proporcionar a oportunidade de formação, crescimento e desenvolvimento profissional, a partir um uma base estrutural forte e sólida formada por todos os profissionais que compõem esta estrutura.

Ao meu orientador Dr. José Augusto Pires Bitencourt e minha coorientadora Dr^a. Gisele Lopes Nunes, pela orientação, por todo o aprendizado, pela confiança, por toda a paciência, pela compreensão, por toda a amizade e ajuda. Profissionais dedicados e com talento extraordinário, no mais, são pessoas das quais inspiro profundo respeito e admiração.

A todo grupo da Genômica Ambiental onde pude adquirir conhecimento de profissionais extremamente capacitados que contribuíram de forma imensa para minha formação, e por proporcionarem um ambiente de trabalho incrível. Em especial ao Tec. Manoel Lopes, à M.a. Jamilly Lima, à M.a. Michele Molina, M.e. Anderson Feitosa, M.a. Raissa Dias, ao Dr. Eder Pires, ao Dr. Santelmo Vasconcelos, ao Dr. Rafael Valadares e ao Dr. Guilherme Oliveira.

À coordenação e à secretaria do Programa de Pós-Graduação em Uso Sustentável de Recursos Naturais em Regiões Tropicais, que sempre se colocaram à disposição em ouvir as turmas e os discentes, incluindo-nos nos processos de elaboração de demandas, colaborando para formação de um mestre e profissional completo.

Ao corpo docente do Programa de Pós-Graduação em Uso Sustentável de Recursos Naturais em Regiões Tropicais, por todo o empenho em ministrar as disciplinas propostas.

À toda turma de mestrado do ano de 2019, pela troca de experiências profissionais e pessoais, apoio que proporcionamos uns aos outros ao decorrer das disciplinas e do primeiro *Workshop* da pós-graduação, pelas conversas e por toda amizade e carinho que foram construídos ao longo do mestrado. Em especial a Vitoria Catarina Martins Cardoso, Keyvilla da Costa Aguiar, Paulo Henrique de Oliveira Costa, Eline Gomes Almeida, Tânia de Sousa Leite e os demais colegas de trabalho e amigos que o Instituto Tecnológico Vale me permitiu encontrar.

À Maria Conceição da Silva, por ter me permitido começar e finalizar este mestrado, o suporte dela foi o que me manteve estudando nesses dois últimos anos, por todo o acolhimento e amor que também foram meu sustento.

À Andreia Oliveira, Adryelly Oliveira, Adryane Oliveira, ao Arthur Lopes e ao Alan dos Santos por todo o apoio emocional, psicológico, e por todo amor e carinho que me ofereceram durante esta jornada.

À Maria Suelem dos Santos do Mar e Fernanda Gabriela da Silva Miranda, por todo apoio e amizade que compartilhamos, por permanecerem independente do tempo e das circunstâncias.

Agradeço imensamente a todas as pessoas que ao longo dessa jornada, colaboraram e foram suporte para que pudesse dar mais um passo e transformar mais um sonho em realidade.

EPÍGRAFE

"O correr da vida embrulha tudo. A vida é assim: esquenta e esfria, aperta e daí afrouxa, sossega e depois desinquieta. O que ela quer da gente é coragem."

- João Guimarães Rosa (em Grande Sertão: Veredas, 1956)

RESUMO

A Floresta Nacional (FLONA) de Carajás, localizada no sudeste do Pará, é considerada um ecossistema único devido a sua grande biodiversidade e alta quantidade de cavidades naturais subterrâneas em formação ferrífera. Essas cavidades possuem propriedades particulares como temperatura anual estável, baixa circulação de ar, elevada umidade relativa, concentrações consideráveis de guano, alto teor de metais e são consideradas oligotróficas. Estas características podem influenciar significativamente a estrutura e dinâmica das comunidades microbianas associadas a estes ambientes. Desta forma, o presente trabalho realizou o levantamento da diversidade taxonômica e investigou a estrutura das comunidades microbianas presentes em cavernas de ferro da FLONA de Carajás, utilizando abordagem de metabarcoding 16S rRNA. Para isso, o DNA ambiental foi extraído de amostras de solo de nove cavidades, em diferentes zonas de iluminação (fóticas, semi-fóticas e afóticas) e diferentes estações (secas e chuvosas); bibliotecas de DNA foram construídas para o gene 16S rRNA e seguenciadas com a plataforma Illumina. De acordo com os resultados, observou-se que 47% das OTUs geradas foram identificadas taxonomicamente até o nível de gênero, quando possível. Apesar da diversidade entre as cavidades ser heterogênea, os filos Actinobacteria, Proteobacteria e Acidobacteria foram os mais abundantes, sendo os gêneros mais frequentes Actinomadura, Mycobacterium, Bradyrhizobium e Burkholderia. A análise da diversidade alfa (dentro de uma mesma cavidade) não indicou diferenças significativas quanto a diversidade entre às zonas de iluminação, entretanto os resultados apontam diferencas significativas quanto a diversidade nas diferentes estações. A análise beta diversidade (entre cavidades) não indicou variações significativas na composição de táxons entre as zonas, estações e entre os demais atributos físicos das cavernas. Em relação ao potencial funcional, as cavidades possivelmente apresentam uma dinâmica quimiotrófica, utilizando como provável fonte de energia e carbono o guano e material orgânico alóctone com raízes. Desta forma, as cavernas ferruginosas amostradas são fontes potenciais de novos táxons, possuem microrganismos que podem participar de processos ligados a fixação de nitrogênio, processo de crescimento vegetal, remineralização de guano e ciclo do ferro. No geral, as cavernas estudadas possuem uma comunidade microbiana estável, entretanto, os dados sugerem que o ambiente interno de cada cavidade suporta redes de interação entre os microrganismos considerando as distintas zonas de iluminação. Para fins de aplicabilidade, este trabalho colabora de forma significativa para preenchimento das lacunas de informações sobre a biodiversidade microbiana de cavernas brasileiras associadas a minério de ferro, podendo estes resultados ser agregados a projetos de manejo e conservação de ambientes cavernícolas, a partir de um ângulo microbiológico.

Palavras-chave: *Metabarcoding*, Diversidade Microbiana, Cavidades Ferruginosas, Carajás.

ABSTRACT

The Carajás National Forest (FLONA), located in southeastern Pará, is considered a unique ecosystem due to its extraordinary biodiversity and high amount of natural underground cavities in the iron formation. These cavities have particular properties such as stable annual temperature, low air circulation, high relative humidity, high concentration of quano, high content of metals, and be oligotrophic. These characteristics can significantly influence the structure and dynamics of the microbial communities associated with these environments. Thus, the present work surveyed the taxonomic diversity and investigated the microbial communities' structure present in iron caves of the FLONA de Carajás, using the metabarcoding 16S rRNA approach. For this, the environmental DNA was extracted from soil samples of nine cavities in different lighting zones (photic, semi-photic, and aphotic) and different seasons (dry and rainy); DNA libraries were built for the 16S rRNA gene and sequenced with the Illumina platform. According to the results, it was observed 47% of formed OTUs were taxonomically identified up to the level of genus, when possible. Despite the diversity between the cavities being heterogeneous, the phyla Actinobacteria, Proteobacteria, and Acidobacteria were the most abundant, being the most frequent general Actinomadura, Mycobacterium, Bradyrhizobium, and Burkholderia. The alpha diversity analysis (within the same cavity) did not indicate significant differences in diversity between lighting zones. However, the results point out significant differences in diversity between seasons. The beta diversity analysis (between cavities) did not indicate significant variations in taxa composition between lighting zones, stations, and other caves' physical attributes. Regarding the functional potential, the cavities possibly have chemotrophic dynamics, using as a probable source of energy and carbon guano and allochthonous organic material with roots. Thus, the ferruginous caves sampled are potential sources of new taxa and have microorganisms that can participate in processes linked to nitrogen fixation, plant growth process, and the remineralization of the guano and iron cycle. In general, the caves studied have a stable microbial community. However, the data suggest that each cavity's internal environment supports networks between the microorganisms considering the different lighting zones. For applicability purposes, this work collaborates significantly to supply the information gaps on Brazilian caves' microbial biodiversity associated with iron ore. These results could be added to projects of management and conservation of cave from a microbiological perspective.

Key-words: Metabarcoding, Microbial Diversity, Ferruginous Cavities, Carajas.

LISTA DE FIGURA

Figura 1 – Ambiente de Canga (A). Recorte de rocha com formação ferrífera bandada - coletada na Serra Sul de Carajás, corpo S11D - onde as formações mais escuras são compostas hematita e magnetita, e as formações mais claras são compostas por jaspe ou chert (SILVA; COSTA, 2020) (B). Estrutura do solo de canga (C).....21 Figura 2 – Esquema estrutural das cavernas ferruginosas localizadas na Floresta Nacional de Carajás. As cavidades podem desenvolver-se tanto nas formações ferríferas bandadas (BIF's) quanto na cobertura lateritica detrítica (canga) ou no encontro entre essas duas formações. A ilustração demonstra a formação de espeleotemas (coralóides e estalactites) e a presença de morcegos (FIGUEIRA et al., 2019)......24 Figura 3 – Representação das cavidades ferríferas de Carajás. Ambiente externo ou entrada (A); Ambiente interno - zona intermediaria (B); Ambiente interno - zona afótica Figura 4 - Pontos de amostragem das nove cavidades em S11B (Serra Sul) na FLONA Figura 5 – Curva de rarefação baseada no sequenciamento do gene 16S rRNA.....36 Figura 6 – Abundância relativa (≥95%) dos filos (A) e gêneros (B) detectados em amostras coletadas nas zonas fótica, penumbra e afótica nas cavidades do corpo Figura 7 - Mapas de calor baseados na abundância dos 10 gêneros microbianos mais abundantes presentes nas cavidades do corpo S11B da Serra de Carajás, contrastando os períodos seco e chuvoso (A), e nas zonas fótica, afótica e penumbra Figura 8 - Correlograma de Pearson entre variáveis físicas (altitude, área, desnível, projeção horizontal, pH e volume) e os filos encontrados nas análises de 16S rRNA em solos das cavidades estudadas, por estações (seca e chuvosa) (A); e por zona de amostragem (fótica, penumbra e afótica) (B). Valores de significância: 0.001 (***), Figura 9 – Correlograma de Pearson entre variáveis físicas (Altitude, área, desnível,

projeção horizontal (PH) e volume) e gêneros encontrados nas análises de 16S rRNA em solos das cavidades estudada, por estações (seca e chuvosa) (A); e por zona de estação (seca e chuvosa) e subdividido por zonas de iluminação (fótica, afótica e Figura 18 – Planta da Cavidade 01 (S11B-0036), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer.....90 Figura 19 - Planta da Cavidade 02 (S11B-0055), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer......91 Figura 20 - Planta da Cavidade 03 (S11B-0073), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer......92 Figura 21 - Planta da Cavidade 04 (S11B-0080), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer......93 Figura 22 - Planta da Cavidade 05 (S11B-0177), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer......94 Figura 23 - Planta da Cavidade 06 (S11B-0178), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer......95 Figura 24 - Planta da Cavidade 07 (S11B-0187), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer......96 Figura 25 - Planta da Cavidade 08 (S11B-0212), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer......97 Figura 26 - Planta da Cavidade 09 (S11B-0220), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio

LISTA DE TABELAS

Tabela 1 – Coordenadas geográficas (UTM) das nove cavidades amostradas. Onde as Coord. E representam as coordenadas no sentido leste-oeste e as Coord. N as Tabela 2 - Setores e zonas de coleta para cada cavidade. Em cada cavidade o setor de menor numeração em algarismo romano representa a entrada caverna e o de maior Tabela 3 – Sequências do par de iniciadores universais (primers) para região do gene Tabela 4 – Filos e gêneros encontrados apenas em uma estação (chuvosa, seco), zona (fótica, penumbra e afótica) ou em comum entre as zonas de iluminação......50 Tabela 5 - Indicies de alfa diversidade para as cavidades estudadas no corpo geológico S11B da Serra de Carajás. Onde os índices a, b, e c representam das diferenças mínimas significativas, entre a menor e a maior média calculada para os indies de diversidade, pelo teste Tukey......57 Tabela 6 – Indicies de alfa diversidade para as estações estudadas. Onde os índices a, b, e c representam das diferenças mínimas significativas, entre a menor e a maior média calculada para os índices de diversidade, pelo teste Tukey......58 Tabela 7 - Indicies de alfa diversidade para as zonas estudadas. Onde os índices a, b, e c representam das diferenças mínimas significativas, entre a menor e a maior Tabela 8 - Valores obtidos a partir das análises de PERMANOVA e PERMDISP, para as variáveis de zonas, estações, diferentes áreas, volumes, projeções horizontais e desníveis das cavidades.62 Tabela 9 - Metadados relacionados a amostras de solo, coletadas em cavidades do corpo geológico S11B, localizado na Serre Sul da Floresta Nacional de Carjás, amostras analisada pela técnica de DNA metabarcoding baseada no gene 16S rRNA. Tabela 10 - Número total de sequências e geradas pós sequenciamento (brutas) e pós tratamento de qualidade para microbioma cavernícola106

 Tabela 11 - Valor dos índices de alfa diversidade por amostra......111

Tabela 15 - Valores para correlação de táxons a nível de gênero com os parâmetros físicos das cavidades (Zona). Valores de significância: 0.001 (***), 0.01 (**), 0.05 (*). Variável (Env): Projeção Horizontal (PH). Valores de p ajustados (AdjPvalue).....119

LISTA DE SIGLAS

- 16S rRNA RNA ribossomal 16S
- ANOVA Análise de variância
- CANIE Cadastro Nacional de Informações Espeleológicas
- CECAV Centro Nacional de Pesquisas e Conservação de Cavernas
- DNA Ácido desoxirribonucleico
- FAPROTAX Functional Annotation of Prokaryotic Taxa
- FLONA Floresta Nacional
- ITV Instituto Tecnológico Vale
- MMA Ministério do Meio Ambiente
- NGS Sequenciamento de Nova Geração
- NMDS Escalonamento multidimensional não-métrico
- OTU Unidade Taxonômica Operacional
- PCR Reação em Cadeia da Polimerase
- PERMANOVA Análise de Variância Multivariada Permutacional
- PERMDISP Análise de Dispersão Multivariada Permutacional
- QIIME Quantitative Insights Into Microbial Ecology
- RDP Ribosomal Database Project
- rRNA RNA ribossomal
- UTM Universal Transversa de Mercator

SUMÁRIO

ORGANIZAÇÃO DA DISSERTAÇÃO

1 INTRODUÇÃO	19
1.1 FLONA DE CARAJÁS E SUA IMPORTÂNCIA ECONÔMICA	19
1.2 CARACTERIZAÇÃO DA FLONA DE CARAJÁS E DAS SUAS CAVI	DADES
FERRUGINOSAS	20
1.3 MICROBIOTA CAVERNÍCOLA EM CAVIDADES FERRUGINOSAS	25
2 OBJETIVO	28
2.1 OBJETIVO GERAL	28
2.2 OBJETIVOS ESPECÍFICOS	28
3 PROCEDIMENTO EXPERIMENTAL	29
3.1 DESCRIÇÃO DA ÁREA E AMOSTRAGEM	29
3.2 EXTRAÇÃO E QUANTIFICAÇÃO DE DNA	31
3.3 AMPLIFICAÇÃO DO GENE 16S rRNA E PURIFICAÇÃO	31
3.4 SEQUENCIAMENTO NA PLATAFORMA ILLUMINA MiSeq	32
3.5 TRATAMENTO DAS SEQUÊNCIAS 16S rRNA	33
3.6 ANÁLISES ESTATÍSTICAS E POTENCIAL FUNCIONAL	33
4 RESULTADOS E DISCUSSÃO	36
4.1 DIVERSIDADE DE MICRORGANISMOS BASEADO NO GENE 16S rF	RNA 36
4.2 ANÁLISE DE ESTRUTURA E REDES MICROBIANAS PARA AS CAVID	DADES
FERRUGINOSAS	51
4.3 ANÁLISE ALFA-DIVERSIDADE DE MICRORGANISMOS	POR
METABARCOGING 16S rRNA	55
4.4 ANÁLISE DE BETA-DIVERSIDADE COM BASE METABARCODIN	G 16S
rRNA	59
5 CONCLUSÕES	70
REFERÊNCIAS	71
ANEXOS	89
APÊNDICES	99

ORGANIZAÇÃO DA DISSERTAÇÃO

O presente trabalho encontra se organizado sob a forma de relatório técnico, como disposto no Regulamento Interno do Programa de Pós-Graduação em Uso Sustentável de Recursos Naturais em Regiões Tropicais do ITV DS.

Relatório técnico:

Estrutura e diversidade taxonômica das comunidades microbianas em cavidades ferruginosas da Flona de Carajás

Sob autoria de

Amanda Manuelly da Silva Oliveira, Gisele Lopes Nunes, José Augusto Pires Bitencourt.

> PROD. TEC. ITV DS – N007/2021 DOI 10.29223/PROD.TEC.ITV.DS.2021.07.Oliveira

1 INTRODUÇÃO

1.1 FLONA DE CARAJÁS E SUA IMPORTÂNCIA ECONÔMICA.

A Floresta Nacional de Carajás (FLONA de Carajás) é uma área de conservação ambiental situada no sudoeste do Estado do Pará, que possui aproximadamente 411.948,87 hectares de extensão (BRASIL, 1998). É uma unidade de conservação (UC) que detém uma elevada biodiversidade apresentando alto nível de raridade e endemismo tanto para flora quanto para a fauna. Além disso, também exibe um valioso capital natural em extensão territorial, sistemas hídricos e elevada concentração de minérios (PONTES *et al.*, 2019; GIANNINI *et al.*, 2020).

Estas elevadas concentrações de minérios, tornam a FLONA de Carajás uma das maiores potências econômicas do país, uma vez que dispõe de uma das maiores reservas de minério de ferro do mundo, juntamente com o Quadrilátero Ferrífero em Minas Gerais e Corumbá no Mato Grosso do Sul (CARVALHO et al., 2014). O minério de ferro encontrado na região de Carajás apresenta uma das purezas mais elevadas do mundo, exibindo teores acima de 60%, valores acima da média mundial que é cerca de 30%, (MACAMBIRA, 2003; SCHAEFER et al., 2016). A extração mineral iniciada em 1985 em Carajás é, até o momento, a principal atividade econômica da região (VALE, 2013). Com isto, surgiu a necessidade de preservar a biodiversidade da FLONA de Carajás que poderia sofrer altos impactos advindos da atividade mineradora. Assim, no ano de 1994 estabeleceu-se o Decreto nº 1.298, no qual determinou-se que os recursos naturais existentes nesta área poderiam ser explorados desde que não houvessem grandes impactos em sua biodiversidade (BRASIL, 1994). Nos anos 2000, parte da FLONA de Carajás passou a ser utilizada como meio de compensação dos impactos causados pela atividade mineradora (Lei nº 9.985, BRASIL, 2000). Desta forma, são exigidos pelos órgãos ambientais, como condicionante à exploração, diversos estudos para melhor compreender a dinâmica ecológica da região. Estudos focados na caracterização do ambiente (físico, químico e geológico) e no conhecimento da biodiversidade (fauna e flora) vem sendo amplamente realizados em Carajás. Esse tipo de informação é imprescindível para a geração de programas de conservação eficientes, ainda mais para ecossistemas que estão constantemente sujeitos as influências antrópicas, como por exemplo, a mineração (HATANO *et al.*, 2012; ICMBIO, 2016).

1.2 CARACTERIZAÇÃO DA FLONA DE CARAJÁS E DAS SUAS CAVIDADES FERRUGINOSAS

A FLONA de Carajás é caracterizada como uma floresta ombrófila aberta, ou seja, a vegetação possui relação direta com o regime pluvial intenso e continuo apresentando uma fitofisionomia endêmica e predominantemente herbáceoarbustiva (Figura 1 A) (VIANA et al., 2016). A região abrange quase toda a extensão das Serras dos Carajás, conhecidas como Serra Norte e Serra Sul, estão localizadas a uma altitude de aproximadamente 800 metros acima do nível do mar. Nestas serras encontram-se as principais jazidas de minério de ferro da FLONA de Carajás, e são constituídas principalmente por uma cobertura laterítica detrítica denominada "canga" (Figura 1). As cangas são afloramentos decorrente do processo de intemperismo sobre rochas com formações ferríferas bandadas ou em faixas (Figura 1 B), ou seja, são rochas sedimentadas quimicamente por ferro ou alumínio, formando camadas finas e alternadas de minérios como a hematita ou magnetita e jasper ou chert (CONDIE, 2015; SCHETTINI et al., 2018). As cangas são observadas como um revestimento ou couraça ferrífera formadas por fragmentos de ferro (MAURITY; KOTSCHOUBEY, 1995), e abrangem cerca de 5% de toda a Floresta Nacional de Carajás (CAMPOS; CASTILHO, 2012).

Figura 1 – Ambiente de Canga (A). Recorte de rocha com formação ferrifera bandada – coletada na Serra Sul de Carajás, corpo S11D – onde as formações mais escuras são compostas hematita e magnetita, e as formações mais claras são compostas por jaspe ou chert (B). Estrutura do solo de canga (C).

Fonte: adaptado de Silva e Costa (2020) e outros autores.

Associada a canga, encontra-se uma biodiversidade com elevado nível de endemismo de animais e vegetais (NUNES *et al.*, 2018; ZAPPI *et al.*, 2019; MARTINS *et al.*, 2012; LYNGGAARD *et al.*, 2020), e isto ocorre devido a adaptação destas espécies às características intrínsecas das áreas de canga, como um solo pobre em nutrientes, ácido (pH 4,8-5,1) e com elevadas concentrações de metais como alumínio, ferro e manganês (SCHETTINI *et al.*, 2018). Além dessas características do solo, a região também é afligida por altas temperaturas diurnas e exposições extremas aos raios ultravioletas. O clima da região é definido como tropical subúmido, apresentando precipitação anual em torno de 1500-1900 mm, com o período de chuvas bem marcados entre Dezembro-Abril (SAHOO *et al.*, 2016).

Além da biodiversidade única, também encontra-se integrado aos ecossistemas de cangas das Serras de Carajás, um rico patrimônio espeleológico de cavidades naturais subterrâneas associadas ao minério de ferro, apresentando altos níveis de endemismo biológico (CANIE, 2021; OLIVEIRA *et al.*, 2019; VASCONCELOS *et al.*, 2021). De acordo com o Centro Nacional de Pesquisas de

Cavernas (CECAV), existem aproximadamente 19.413 cavernas registradas na base de banco de dados, entretanto, este número está longe de representar a realidade das cavidades no território brasileiro, que possui menos de 5% do potencial espeleológico conhecido (JANSEN; PEREIRA, 2015; CANIE, 2019).

No Brasil, levantamento culturais, geológicos, geoquímicos e biológicos das cavidades são realizados por meio de órgão ambientais (CECAV e Ministério do Meio Ambiente) com a finalidade de classificá-las por níveis de relevância (máxima, alta, média e baixa relevância) (BRASIL, 2008; MMA, 2009). A classificação orienta de acordo com a legislação ambiental à possibilidade de ocorrência e extensão dos impactos ambientais provocados nas cavernas, buscando estabelecer uma conciliação entre a vertente ambiental e os interesses econômicos. Cavernas de máxima relevância não podem sofrer impactos irreversíveis, uma vez que fica estabelecido proteção integral a esta cavidade devido as suas características únicas. Entretanto, permite-se que as cavidades classificadas com alta e média relevância, possam ser exploradas desde que passem pelo processo de compensação, ou seja, para utilizar os recursos minerais destas cavidades faz-se necessário a conservação de duas cavidades com características geológicas, geoquímicas, espeleológicas e bioespeleógicas equivalentes, desta forma preservando pelo menos duas cavidades testemunhos de estimada riqueza biológica, mineral e cultural (MMA, 2009).

No mundo, cerca de 90% das cavernas registradas possuem litologia de carbonato, porém no Brasil existe uma grande diversidade quanto a litologia de cavidades subterrâneas (PILÓ e AULER, 2011, RIBEIRO *et al.*, 2017). A FLONA de Carajás atualmente, detém 7% (1.513 cavidades – cidades de Parauapebas e Canaã dos Carajás, Pará) das cavidades subterrâneas nacionais ligadas a minério de ferro, de acordo com a base de dados do Cadastro Nacional de Informações Espeleológicas (CANIE), pertencente ao CECAV (CANIE, 2021).

O número de trabalhos relacionados a cavernas de ferro vem crescendo, influenciando na conservação das mesmas e na exploração sustentável dos minérios associados a estas cavernas (AULER *et al.*, 2019). Essas cavidades são formadas sob formações ferríferas, desenvolvendo-se totalmente tanto nas formações ferríferas bandadas quanto inteiramente sob as cangas. Podem também, ter sua formação no ponto de contato entre as formações ferríferas e as cangas (Figura 2) (PILÓ; AULER; MARTINS, 2015). As cavidades ferruginosas da

22

Flona de Carajás, possuem características que as tornam ambientes únicos devido a própria litologia e a biota especializada. Apesar de classificadas como pequeno porte, possuem dimensões espaciais (área, volume e projeção horizontal) maiores quando comparadas as cavernas do Brasil. Além disto, apresentam elevada umidade, cerca de 90% da umidade relativa do ar, temperatura estável durante o ano (28°C - 40°C), baixa circulação de ar, concentração elevada de morcegos e, consequentemente, elevada presença de guano, caracterizado pelo acúmulo do excremento de aves e morcegos (CAMPOS e CASTILHO 2012).

Estudos sugerem que as cavernas de Carajás possuem indiretamente uma conectividade com a superfície. Sabe que as cavidades ferruginosas de Carajás podem chegar até 10 metros de profundidade, no entanto, a superfície porosa da canga permite que haja uma conexão entre esses ambientes. Devido a isto, é possível que os ambientes cavernícolas de Carajás sofram com as variações externas como mudança de estação, influência de águas provenientes das chuvas, assim como a penetração de raízes oriundas da vegetação localizada acima das cavidades. Todos esses fatores podem gerar uma possível interferência na dinâmica nutricional da biota interna das cavidades através da entrada de nutrientes, uma vez que estes ambientes são oligotróficos, ou seja, possuem baixa disponibilidade de nutrientes (AULER et al, 2019).

Dentro destas cavidades é possível observar espeleotemas, que são formações rochosa constituídas por depósitos de sedimentos químicos, como crostas, coralóides e estalactites (Figura 2). Estas formações estão associadas aos processos de interações das rochas com soluções aquosas e os processos de dissolução e precipitação química ou mediada por microrganismos. Os espeleotemas estão diretamente associados a litologia das cavernas e a deposição de guano, ossos e urina de morcegos, uma vez que são compostas por óxido de ferro-hidróxidos e fosfato, tornando esses espeleotemas únicos (PILÓ; AULER; MARTINS, 2015; ALBUQUERQUE *et al.*, 2018; FIGUEIRA *et al.*, 2019; AULER *et al.*, 2019).

Figura 2 – Esquema estrutural das cavernas ferruginosas localizadas na Floresta Nacional de Carajás. As cavidades podem desenvolver-se tanto nas formações ferríferas bandadas (BIF's) quanto na cobertura laterítica detrítica (canga) ou no encontro entre essas duas formações. A ilustração demonstra a formação de espeleotemas (coralóides e estalactites) e a presença de morcegos.

Fonte: FIGUEIRA et al. (2019).

Outra característica importante das cavidades da FLONA de Carajás, está relacionado ao zoneamento provocado pela incidência de luz (Figura 3). Entendese que há uma limitação quanto a profundidade e as dimensões cavernícolas, e isto implica diretamente nas zonas de iluminação dentro das cavernas. Estas zonas podem ser classificadas como zona com luz ou fótica (entrada da caverna), zona de penumbra ou semi-fótica (zona intermediária) e zona afótica (fundo da caverna, com ausência total de luminosidade e regularmente a área de maior extensão da cavidade) (NORTHUP e LAVOIE, 2001; ADEN, 2005; GILLIESON, 2009). Estas diferentes faixas de iluminação e a ausência total de luz dentro das cavernas, podem influenciar de forma rigorosa a atividade trófica nas cavidades, especialmente nas zonas afóticas, uma vez que nestes ambientes a produção primária por organismos fotoautotróficos é considerada ausente. Isto pode implicar na disponibilidade de nutrientes e consequentemente atua como fator seletivo para a biota interna da cavidade (FIŠER, 2019).

Figura 3 – Representação das cavidades ferríferas de Carajás. Ambiente externo ou entrada (A); Ambiente interno - zona intermediaria (B); Ambiente interno - zona afótica (C).

Fonte: Piló et al. (2015).

1.3 MICROBIOTA CAVERNÍCOLA EM CAVIDADES FERRUGINOSAS

Diante dos atributos elencados para as cavidades ferruginosas, é valido ressaltar a importância de gerar informações sobre estes sistemas singulares e tão pouco conhecidos, principalmente no que diz respeito da microbiota. A maioria das transformações químicas dos elementos presentes na natureza são mediadas através da atividade metabólica dos microrganismos, por meio de processos de fixação e remineralizarão dos elementos químicos (MADSEN *et al.*, 2011).

Microrganismos presentes em cavidades subterrâneas são considerados metabolicamente versáteis, dado que, estes ambientes são considerados extremos, seja por escassez de nutrientes, baixos níveis de pH ou altas temperaturas (ENGEL et al.. 2019). Em cavidades são detectados microrganismos fototróficos, quimioorganotróficos (quimioheterotróficos) ou quimilitotótroficos, sendo os microrganismos fototróficos estão mais relacionados a entrada da cavidade, ou seja, a região que recebe a maior incidência de luz, e os quimioorganotróficos ligados as zonas afóticas das cavidades. Zonas afóticas impossibilitam o processo de fotossíntese microbiana e nestes ambientes são selecionados os microrganismos com diferentes mecanismos para a obtenção de energia, utilizando compostos inorgânicos como hidrogênio, nitrito, sulfeto ou ferro disponíveis nestes habitats. Além disto, em ambientes cavernícolas, as comunidades microbianas estão intimamente ligadas a degradação de elementos de caráter recalcitrante da matéria orgânica alóctone. Boa parte desses elementos são constituídos por celulose e quitina, exigindo que a microbiota haja em sintrofia para a degradação desses compostos, requerendo, portanto, um sofisticado aparato de sinalização bioquímica ou *quorum sensing* (DAI *et al.*, 2016; BAO *et al.*, 2019).

Processos quimiolitrotróficos em cavidades ferruginosas ocorrem principalmente durante a biogênese das cavernas de ferro (PARKER et al., 2013; LEVETT et al., 2016). A litologia ferrífera das cavidades de Carajás pode cumprir um importante papel no metabolismo microbiano presente nas cavidades, uma vez que, microrganismos redutores de ferro férrico podem utilizar o Fe (III) presente nas cavidades como doador de elétrons no processo de respiração microbiana, obtendo como produto residual deste processo, o ferro férrico (Fe (III)) (LOVLEY, 1991). Este fato já foi observado em cavidades ferruginosas associadas a canga (PARKER et al., 2013; PARKER et al., 2018). Nas cavidades da Floresta Nacional de Carajás foram observados táxons microbianos com capacidade de oxidação e redução de Fe (III) em Fe (II), e com via metabólica secundária reoxidando Fe (II) em Fe (III) (PARKER et al., 2013). Para mais, estes microrganismos também podem fazer parte da formação de espeleotemas raros (ALBUQUERQUE et al., 2018; FIGUEIRA et al., 2019).

Esta configuração da microbiota junto a singularidade das cavidades naturais (litologia e geoquímica), tornam essas populações microbianas altamente especializadas e únicas (ADESSO *et al.*, 2020; DONG *et al.*, 2020; DAVIS *et al.*, 2020). Isto valida a importância de investigar se a microbiota dessas cavidades sofre influência das configurações de zoneamento provocado por presença ou ausência de luz, dimensões físicas (área, volume e projeção horizontal) e períodos de altas pluviosidades.

O conhecimento diversidade atual sobre distribuição da de а microrganismos e suas funcionalidades em ambientes de cavernas naturais no Brasil é incipiente, especialmente no que diz respeito a cavernas ferruginosas (HERSHEY; BARTON, 2018). Recentemente Paula et al., (2018) realizou um trabalho para mostrar a diversidade microbiana em cavidades pertencentes a região tropical do país, enquanto Lemes (2018) trouxe dados sobre a composição da comunidade microbiana das cavernas ferruginosas localizadas no Quadrilátero Ferrífero. De acordo com a literatura, trabalhos recentemente publicados relacionados à levantamento taxonômico microbiológico de cavernas, estão vinculados a cavidades não ferruginosas (TALÀ et al., 2021; ADDESSO et al.,

26

2020; D'ANGELI *et al.*, 2020; DAVIS *et al.*, 2020; DOĞRUÖZ-GÜNGÖR, 2020; JURADO *et al.*, 2020).

Diversos trabalhos utilizam a abordagem de DNA metabarcoding para caracterização taxonômica de comunidades microbianas em diversos ambientes, incluindo cavernas (OLIVEIRA et al., 2017; ADESSO et al., 2020; SUN et al., 2021; GLAESER et al., 2021). A técnica se baseia na amplificação de um gene marcador, a partir do DNA extraído diretamente do ambiente, e sequenciamento de nova geração (NGS). No caso dos microrganismos (Bacteria e Arcahea), o gene 16S rRNA foi adotado como marcador genético universal. Este gene possui cerca de 1500 base nucleotídicas, está contido na subunidade ribossomal 30S do genoma bacteriano (YANG; WANG; QIAN, 2016) e possui nove regiões altamente variáveis (apresentam regiões conservadas e não-conservadas), o que possibilita realizar análises de caráter evolutivo e taxonomicamente discriminatório (CHAKRAVORTY et al., 2007). Dentre as nove regiões hipervariáveis, a região V3-V4 é a mais indicada para realizar análises de diversidade microbiana, uma vez que esta região apresenta maior êxito na representação da diversidade de filos (PEIFFER et al., 2013). Desta forma, a técnica permite o acesso à composição da comunidade microbiana presente em gualquer amostra ambiental, sem necessidade de isolamento e cultivo in vitro (RUPPERT et al. 2019), permitindo inferir a diversidade microbiana, com tempo de processo e custos reduzidos, uma vez que que 99% dos microrganismos não são cultiváveis em laboratório (SCHOLZ; LO; CHAIN, 2012). A aplicação de abordagens moleculares em estudos de levantamento da biodiversidade é essencial quando se visa entender a influência do ambiente sobre microbiota, principalmente em ambientes tão particulares como as cavidades ferruginosas. Desta forma, dados sobre estrutura da microbiota em cavidades ferruginosas da FLONA de Carajás são inéditos, e poderão ser utilizados futuramente para auxiliar programas de conservação e mitigação de possíveis impactos gerados pela atividade mineradora.

2 OBJETIVO

2.1 OBJETIVO GERAL

Avaliar a diversidade taxonômica e o potencial funcional das comunidades microbianas presentes no solo de cavidades ferruginosas da Floresta Nacional de Carajás, Pará, utilizando abordagem de *metabarcoding*.

2.2 OBJETIVOS ESPECÍFICOS

- a) Acessar a diversidade e a riqueza de microrganismos nas zonas afótica, fótica e penumbra das cavidades em S11B;
- b) Avaliar a diversidade e riqueza de microrganismos em função da sazonalidade;
- c) Verificar a dinâmica estrutural da comunidade microbiana entre as distintas cavidades da avaliadas.
- d) Inferir o potencial funcional microbiano das cavidades ferruginosas FLONA de Carajás.

3 PROCEDIMENTO EXPERIMENTAL

3.1 DESCRIÇÃO DA ÁREA E AMOSTRAGEM

As amostras foram coletadas no período de junho de 2018 a janeiro de 2019 em nove cavernas localizadas no corpo geológico de S11B (Figura 4), na Serra de Carajás, pelo grupo de espeleologia da empresa VALE. Os critérios para escolha das cavidades, basearam-se em diferentes pontos e distâncias dentro do perímetro do corpo S11B localizados na Serra Sul (Tabela 1). Além disto, foram consideradas as distintas características físicas de cada caverna, tais como: projeção horizontal, área, volume e desnível. Todas as cavernas selecionadas possuem relevância máxima de acordo com Maciel et al., (2019), são de corpo ferrífero e, mandatoriamente, possuem três zonas de iluminação. Os metadados relacionados as cavidades estão disponíveis no Apêndice A na Tabela 9 e as plantas internas para cada cavidade, sinalizando a localização dos setores e zonas de iluminação, além dos lagos internos, vegetação e guano, estão no Anexo A da Figura 18 à Figura 26.

Datum: Sirgas 2000

Tabela 1 – Coordenadas geográficas (UTM) das nove cavidades amostradas. Onde as Coord. E representam as coordenadas no sentido leste-oeste e as Coord. N as coordenadas no sentido nortesul.

Caverna	Identificação	Coord. E	Coord. N
CAVE_01	S11B_0036	564705	9298013
CAVE_02	S11B_0055	567623	9297202
CAVE_03	S11B_0073	566186	9296375
CAVE_04	S11B_0080	566490	9296848
CAVE_05	S11B_0177	564655	9299263
CAVE_06	S11B_0178	564827	9298239
CAVE_07	S11B_0187	564640	9299207
CAVE_08	S11B_0212	563294	9299769
CAVE_09	S11B_0220	564254	9299842

Fonte: elaborado pelo autor (2021).

As amostras foram coletadas em três setores distintos de cada caverna (Tabela 2). Estes setores estão diretamente relacionados as áreas de entrada, meio e fundo das cavernas, ou seja, as zonas de iluminação fótica, penumbra e afótica, respectivamente. A amostragem foi realizada em nove cavidades, nas quais foram coletados 10 g de solo de cada zona (fóticas, penumbra e afótica), à uma profundidade de 0-5 cm. O material coletado foi armazenado em tubos Falcon estéreis de 15 mL e conservado à -4° C. Posteriormente o material foi encaminhado em contêiner com temperatura controlada (-20 °C) para o laboratório de genômica ambiental no Instituto Tecnológico Vale - Desenvolvimento Sustentável em Belém /Pará, e em seguida armazenado à -80°C.

Tabela 2 – Setores e zonas de coleta para cada cavidade. Em cada cavidade o setor de menor numeração em algarismo romano representa a entrada caverna e o de maior numeração o fundo da caverna.

Caverna	Identificação	Setor	Zona
		I	Fótica
CAVE_01	S11B_0036	П	Penumbra
			Afótica
		I	Fótica
CAVE_02	S11B_0055		Penumbra
		IV	Afótica
		I	Fótica
CAVE_03	S11B_0073	Ш	Penumbra
		VII	Afótica
		Ι	Fótica
CAVE_04	S11B_0080	Ш	Penumbra
			Afótica
	S11B 0177	I	Fótica
CAVE_05	CAVE_03 STIB_0177	П	Penumbra

Caverna	Identificação	Setor	Zona
			Afótica
		V	Fótica
CAVE_06	S11B_0178	VI	Penumbra
		VII	Afótica
		I	Fótica
CAVE_07	S11B_0187	П	Penumbra
		VII	Afótica
		I	Fótica
CAVE_08	S11B_0212	П	Penumbra
		Ш	Afótica
			Fótica
CAVE_09	S11B_0220	П	Penumbra
		IV	Afótica

Fonte: elaborado pelo autor (2021).

3.2 EXTRAÇÃO E QUANTIFICAÇÃO DE DNA

A extração de DNA foi realizada a partir de 0,25 g de solo, utilizado o kit de extração de DNA QIAGEN PowerSoil® DNA Isolation Kit (QIAGEN, Hilden, German), seguindo as instruções do fabricante. A concentração de DNA foi verificada por fluorímetria, através do Qubit ® 3.0 (Thermo Fisher Scientific). A qualidade foi verificada através de eletroforese em gel de agarose a 1% (Life Technologies, Thermo Fisher Scientific Inc.).

3.3 AMPLIFICAÇÃO DO GENE 16S rRNA E PURIFICAÇÃO

A construção das bibliotecas foi realizada utilizando o protocolo 16S Metagenomic Sequencing Library Preparation da Illumina (Illumina, San Diego, CA, USA). Para analisar a composição taxonômica das comunidades microbianas, as regiões V3 e V4 do gene ribossomal 16S foram amplificadas através da reação em cadeia da polimerase (PCR – *Plymerase Chain Reaction*), utilizando um par de iniciadores universais (*primers*) (Tabela 3).

Tabela 3 – Sequências do par de iniciadores universais (<i>primers</i>) para região	o do gene	e 16S rRNA.
--	-----------	-------------

Nome Padrão	Sequência (5' para 3')
S-D-Bact-0341-b-S-17-N (16S_ILL_F)	CCTACGGGNGGCWGCAG
S-D-Bact-0785-a-A-21-N (16S_ILL_R)	GACTACHVGGGTATCTAATCC
Eanta: Klindworth at al. (2012)	

Fonte: Klindworth et al. (2013).

Este par de *primers* contém sequências nucleotídicas chamadas *overhang*, que permitem a adição dos *indexs*, sequências que permitem a identificação individual das

amostras em etapas posteriores. Cada reação de PCR foi preparada com o volume final de 25 μ L, contendo: 1 μ L de DNA (5 ng/ μ L; 5 μ L de Buffer 5X; 2 μ L de MgCl₂ (25 mM); 1,25 μ L de dNTP (2 mM); 0,5 μ L do primer 16S_ILL (F) (10 mM); 0,5 μ L do primer 16S_ILL (R) (10 mM); 0,15 μ L Taq (Promega).

As reações de PCR foram amplificadas em termociclador (Applied Biosystems -Veriti 96-well Thermal Cyclercom) com seguinte perfil de temperatura: desnaturação inicial de 95 °C por 3 minutos, seguida por 25 ciclos de 95 °C por 30 segundos, 57 °C por 30 segundos e 72 °C por 30 segundos, e uma extensão final de 72 °C por 5 minutos. Em seguida, foi realizada a guantificação do DNA através de fluorometria, utilizando o Kit de quantificação de DNA Qubit™ dsDNA HS (High Sensitivity) Assay (Thermo Fisher Scientific) e fluorímetro Qubit ® 3.0 (Thermo Fisher Scientific). A qualidade dos amplicons foi verificada quanto ao tamanho dos fragmentos, por meio eletroforese em gel de agarose a 1% (Life Technologies, Thermo Fisher Scientific Inc.). Em seguida, os amplicons foram purificados utilizando o kit de esferas magnéticas Agencourt AMPure XP (Bechman Coulter, Inc., Brea, EUA), de acordo com as instruções do fabricante. Os adaptadores de sequências únicas (indexs/barcodes) foram adicionados a cada amostra através da etapa de PCR Index, utilizando os indexs do Kit Nextera DNA CD Indexes (Illumina, San Diego, CA, USA), através do seguinte perfil de temperatura: desnaturação inicial de 95 °C por 3 minutos, seguida por 8 ciclos de 95 °C por 30 segundos, 55 °C por 30 segundos e 72 °C por 30 segundos, e uma extensão final de 72 °C por 5 minutos. A bibliotecas foram purificadas utilizando o kit Agencourt AMPure XP.

3.4 SEQUENCIAMENTO NA PLATAFORMA ILLUMINA MiSeq.

O Sequenciamento foi realizado no laboratório de Genômica Ambiental do Instituto Tecnológico Vale – Desenvolvimento Sustentável em Belém do Pará. As bibliotecas foram quantificadas por fluorimetria, utilizando o Kit de quantificação de DNA Qubit[™] dsDNA BR (Broad Range) Assay (Thermo Fisher Scientific) e o fluorímetro Qubit ® 3.0 (Thermo Fisher Scientific). A qualidade das bibliotecas quanto ao tamanho dos fragmentos, foi verificada através de eletroforese capilar pelo sistema TapeStation 4200 e utilizando o kit D1000 ScreenTapes (Agilent Technologies, Santa Clara, CA, EUA).

Posteriormente, as bibliotecas foram padronizadas para concentração de 4 nM de acordo com o protocolo 16S Metagenomic Sequencing Library Preparation da

Illumina (Illumina, San Diego, CA, USA). Após a padronização, o pool genômico foi desnaturado, em seguida foram adicionados 20% do controle de sequenciamento PhiX. Em seguida, 600 µL desta reação foram carregadas no cartucho de sequenciamento. A corrida de sequenciamento foi realizada na plataforma MiSeq da Illumina utilizando o kit de corrida MiSeq V3 600 ciclos.

3.5 TRATAMENTO DAS SEQUÊNCIAS 16S rRNA

Para identificação taxonômica das comunidades bacterianas pertencente às cavidades ferruginosas, as sequências brutas foram submetidas ao *pipeline* PIMBA (*Pipeline for MetaBarcoding Analysis*) (OLIVEIRA *et al.*, 2021), que permite a personalização do banco de dados de referência. Este *pipeline* foi desenvolvido pelo grupo de bioinformática do ITV e tem como base o *pipeline* QIIME (*Quantitative Insights Into Microbial Ecology*) (CAPORASO *et al.*, 2010).

Primeiramente, ocorre a etapa de trimagem e filtragem das sequências por qualidade utilizando Prinseq (SCHMIEDER e EDWARDS, 2011). Nesta etapa apenas sequências com valores de qualidade Phred >20 e maiores que 100 pb foram consideradas. Posteriormente, as sequências *forward* e *reverse* foram montadas através do *pear* (ZHANG *et al.*, 2014) gerando uma sequência *consensu*. Após a montagem foi realizada a etapa de derreplicação, que considera apenas uma sequência representante por grupo, removendo assim as duplicatas. As sequências com similaridade \geq 97% foram agrupadas dentro de OTUs (*Unidades Taxonômicas Operacionais*) utilizando o USEARCH 7 (https://www.drive5.com/usearch/). A taxonomia das OTUs foi feita através da comparação com as sequências disponíveis no banco de dados público do RDP v.11 (*Ribosomal Database Project*) (WANG *et al.*,2013).

3.6 ANÁLISES ESTATÍSTICAS E POTENCIAL FUNCIONAL

As análises estatísticas foram realizadas através do software RStudio (2020). Todos os gráficos foram gerados a partir da tabela de abundância de OTUs e de taxonomia utilizando os pacotes Phyloseq e ggplot2 (MCMURDIE; HOLMES, 2013; WICKHAM, 2016). A diversidade alfa da comunidade microbiana (Shannon), riqueza (Chao1) e a estrutura (Simpson) foram analisadas, e em seguida foram aplicados uma análise de variância (ANOVA), adotando valor de p significante igual à 0.05, e o teste a posteriori de Tukey, para verificar se houve diferenças significativas entres os índices.

Para analisar a dissimilaridades entres as matrizes das OTUs, nas diferentes estações, zonas e em relação aos paramentos físicos das cavernas (área e volume), utilizou-se o escalonamento multidimensional não métrico (NMDS - *Non-metric Multidimensional Scaling*). A distância de *Bray-Curtis* foi utilizada como padrão para construir as matrizes de distância das comunidades microbianas.

Uma análise de variância multivariada permutacional (PERMANOVA), foi utilizada para avaliar se houve diferenças significativas entre as cavidades amostradas, as zonas (fótica, penumbra e afótica), e os paramentos físicos das cavidades (área, volume, projeção horizontal, desnível e altitude). A análise foi realizada utilizando a distância de Bray-curtis e a função adonis com 9.999 permutações (ANDERSON, 2001). Aplicou-se o teste de homogeneidade de dispersões multivariadas PERMDISP (Permutational Analysis of Multivariate Dispersions) a partir da função betadisper no software R Studio (ANDERSON, 2006), para compreender os efeitos da dispersão dos táxons. Afim de avaliar se os parâmetros físicos das cavernas influenciam de forma positiva ou negativamente a composição de filos e gêneros encontrados nas diferentes zonas e estações, uma análise de correlação com o coeficiente de Person, através dos pacotes microbiomeSeq, ggplot2 e igraph, foi realizada (CSARDI et al., 2006; WICKHAM, 2016; SSEKAGIRI; SLOAN; ZEESHAN, 2007). Para visualizar o compartilhamento de táxons a nível de filo e gênero, entre as estações chuvosa e seca, e entre as diferentes zonas de luminosidade nas cavernas, utilizou-se a ferramenta online InteractiVenn (HEBERLE et al., 2015) para a construção dos digramas de Venn.

As análises de redes foram feitas utilizando os pacotes phyloseq, ggplot2, grid, igraph e ggnetwork (MURRELL, 2005; CSARDI *et al.*, 2006; MCMURDIE; HOLMES, 2013; WICKHAM, 2016; BRIATTE *et al.*, 2020), empregando a função *make_network* com a distância de Jaccard, através do software R Studio (2020).

Para analisar o potencial fisiológico microbiano presente nas cavidades estudadas, as OTUs obtidas por sequenciamento 16S rRNA foram comparadas com bancos de dados públicos e literatura de referência (ex. NCBI, The Prokaryote, International Journal of Systematic and Evolutionary Microbiology e Bergey's Manual of Systematics of Archaea and Bacteria) contendo informações genômicas e dados sobre funções fisiológicas e ecológicas relevantes. O processo e feito por meio de um

script em linguagem *python* que realiza anotações funcionais para procariotos, FAPROTAX - *Functional Annotation of Prokaryotic* (LOUCA; PARFREY; DOEBELI, 2016). O gráfico foi gerado utilizando o software R Studio (2020), com auxílio dos pacotes ggplot2, reshape2 e dplyr (WICKHAM *et al.*, 2015; WICKHAM, 2016; WICKHAM *et al.*, 2007).

4 RESULTADOS E DISCUSSÃO

4.1 DIVERSIDADE DE MICRORGANISMOS BASEADO NO GENE 16S rRNA

O volume de dados brutos produzidos e obtidos após tratamento de qualidade, considerando reads e pares de base (pb), estão presentes no Apêndice B na Tabela 10. Foram gerados 66.664.456 reads contendo de 20.024.843.079 pb para a totalidade das amostras. Posterior ao tratamento de qualidade, restaram cerca de 60.903.178 reads e 13.191.765.085 pb pb de alta qualidade para o total de amostras sequenciadas. As curvas de rarefação mostram que o sequenciamento foi suficientemente profundo para todas as amostras testadas (Figura 5).

Fonte: elaborado pelo autor (2021).

As amostras para as cavernas 01 (S11B_0036) e 03 (S11B_0073), nas zonas de penumbra e fótica, respectivamente, não amplificaram o gene 16S rRNA. Isto pode ocorrer devido a presença de substâncias que agem como inibidores a principal enzima utilizada no processo de PCR, a DNA polymerase. Os inibidores comumente encontrados em amostras ambientais estão relacionados a íons metálicos, e aos ácidos fúlvicos e húmicos (SCHRADER et al., 2012), elementos comumente encontrados em cavidades devido a litologia e a formação de querogênios pela decomposição de material orgânico recalcitrante (JAMES; CONTOS; BARNES, 2019; XU; YAN; ZHANG, 2020).
As Unidades Taxonômicas Operacionais (OTUs) foram identificadas por comparação com o banco de dados público Ribosomal Database Project (RDP) (WANG et al., 2013), um banco referência criado a partir de genes ribossomais (16S e 28S rRNA) voltado para identificação de membros pertencentes aos domínios Bacteria, Archaea e Eukarya (fungos). Aproximadamente 53% (2.755) das OTUs não foram identificadas. Este resultado demonstra que os ambientes cavernícolas da região de Carajás, possuem um forte potencial para a descobertas de novos microrganismos. Dentre as OTUs classificadas, um total de 25 filos, 48 classes, 77 ordens, 132 famílias e 232 gêneros foram detectados. Os filos mais abundantes foram Actinobacteria, Proteobacteria e Acidobacteria, três filos comumente encontrados em amostras de cavernas no mundo inteiro (TOMCZYK-ŻAK; ZIELENKIEWICZ, 2016; DE MANDAL et al., 2017; OLIVEIRA et al., 2017; WISESCHART; POOTANAKIT, 2020; TURRINI et al., 2020). No período seco, o filo Acidobateria mostrou-se mais abundantes (Figura 6 A). Dentre os gêneros, os mais abundantes foram o Actinomadura e Mycobacterium para todas as amostras, entretanto, observou-se que as Mycobacterium. foram mais predominantes na zona afótica. Em relação a sazonalidade, Bradyrhizobium mostrou-se mais abundante no período seco e Burkholderia no período chuvoso (Figura 6 B).

As actinobactérias, um dos maiores e mais diversos filos do domínio Bacteria, são organismos cosmopolitas, morfologicamente complexos e apresentam alto conteúdo de guanina e citosina em seus materiais genéticos (WHITMAN; GOODFELLOW; KÄMPFER, 2012, VAN BERGEIJK *et al* 2020; VAN *et al.*, 2017; ARAUJO *et al.*, 2020). São organismos altamente relevantes nas áreas da saúde humana e animal, pois essas bactérias são amplamente utilizadas em processos biotecnológicos, como por exemplo, na produção de produtos bioativos como os antibióticos (BERDY, 2005; BARKA *et al.*, 2016; VAN BERGEIJK *et al.*, 2020; DE MOURA *et al.*, 2021). As actinobactérias são também categorizadas como promotores de crescimento em plantas, principalmente em ambientes extremos com pouca disponibilidade de nutrientes, altas concentrações de metais, baixa umidade e alta salinidade (SALWAN; SHARMA, 2020; YADAV *et al.*, 2021). A elevada abundância deste filo nas cavidades avaliadas pode estar associada ao fato de que esses ambientes são considerados oligotróficos, possuem elevada concentração de metais e disponibilidade de fosfato, uma vez que integrantes deste filo solubilizam fosfato e

potássio, assim como ferro ferroso e produzem enzimas como as quitinases (YADAV *et al.*, 2018; MACIEL *et al.*, 2019; FIGUEIRA *et al.*, 2019).

Figura 6 – Abundância relativa (≥95%) dos filos (A) e gêneros (B) detectados em amostras coletadas nas zonas fótica, penumbra e afótica nas cavidades do corpo S11B da Serra de Carajás, considerando diferentes regimes de chuva.

Fonte: elaborado pelo autor (2021).

Os gêneros detectados em maior abundância nas cavidades estudas pertencem ao filo Actinobacteria, e estes são Actinomadura e Mycobacterium. Actinomadura. apresentou elevada abundância nas amostras das cavidades

estudadas. As espécies pertencentes a este gênero são microrganismos aeróbios, não ácidos-resistentes, Gram-positivos, são encontradas principalmente em amostras de solo e estão diretamente relacionadas à ciclagem de nutrientes (KROPPENSTEDT; GOODFELLOW, 2006; ZHANG et al., 2001). Entretanto, espécies de Actinomadura spp. podem também ser encontradas em tecidos vegetais e animais, água salgada, solos da Antártica, fluidos humanos e em amostras de cavernas pelo mundo (NIYOMVONG et al., 2012; DE MANDAL; SANGA; NACHIMUTHU, 2014; YASIR et al., 2018; HAMEDI; KAFSHNOUCHI; RANJBARAN, 2019). Já Mycobacterium, detectado em maior abundância nas zonas afóticas das cavidades estudadas, são microrganismos ubíquos e incluem membros patogênicos oportunistas, entretanto, a maior parte das espécies pertencentes são de vida livre (TORTOLI, 2003). Mycobacterium spp. podem ser encontradas em amostras água (LANDE et al., 2019), solo (TIÓ-COMA et al., 2019), assim como em cavidades (JURADO et al., 2010; DE MANDAL; SAIZ-JIMENEZ, 2012; CHATTERJEE; KUMAR, 2017). De acordo com a literatura, tanto Actinomadura spp. quanto Mycobacterium spp. são organismos intimamente ligados a presença de guano (MODRA et al, 2017), podendo atuar tanto na fixação nitrogênio ou na solubilização de ferro e de fosfato presente no guano. Essas características favorecem a disponibilização de nutrientes a partir do material detrítico e particulado, beneficiando assim, a proliferação de bactérias e animais troglóbios (PARKER et al., 2013; AUBUQUERQUE et al., 2019). A presença de Mycobacterium em maior abundância no período seco, especificamente na zona afótica, pode estar ligado a resiliência que estes microrganismos apresentam a seca, indicando uma possível alteração na disponibilidade de água nesta zona da caverna no período seco (KARLIDAG et al., 2007; GTARI et al., 2012; KARMAKAR et al., 2021).

O segundo filo mais abundante detectado nos solos das cavernas estudadas em S11B, foi o Proteobacteria. Considerado o maior e mais diverso filo bacteriano, as proteobactérias estão subdividas em seis classes: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria e Zetaproteobacteria (KERSTERS et al 2006; SHIN; WHON; BAE, 2015). São microrganismos encontrados nos mais diversos ecossistemas tropicais (YANG et al., 2020), estão presentes em amostras de arenito (MENG et al., 2020), sedimentos marinhos (VIPINDAS et al., 2020), áreas de mineração (YANG et., 2020) e água doce (YANG et al., 2020). O amplo potencial funcional e metabólico das

proteobactérias deve-se a heterogeneidade do filo, podendo ser quimiolitotróficos, quimiorganotróficos e fototróficos. Podem estar associadas a oxidação do ferro, fixação de nitrogênio e possuem grande potencial para gerar moléculas bioativas, que podem ser utilizadas principalmente em técnicas de biorremediação e bioconservação (MORYA; SALVACHÚA; THAKUR, 2020). Pertencente a este filo, *Bradyrhizobium*. demonstrou-se mais abundante no período seco, enquanto *Burkholderia*. no período chuvoso. Ambas bactérias são encontradas em diversos ambientes como amostras de solo (VANINSBERGHE *et al.*, 2015), tecidos humanos (BHATT *et al.*, 2013; BURNS, 2012; MORYA; SALVACHÚA; THAKUR, 2020)), ambientes aquáticos (TAO *et al.*, 2021), solos desérticos (DAI; LIU; WANG, 2012), cangas (PARKER *et al.*, 2018; OLIVEIRA SILVA *et al.*, 2020), além de ambientes cavernícolas (DE MANDAL; CHATTERJEE; KUMAR, 2017; VARDEH; WOODHOUSE; NEILAN, 2018; BRAR.; BERGMANN, 2019; CAILHOL *et al.*, 2020; AMASHA; ALZAHRANI; ALY,2020).

A dominância das proteobactérias nos mais diversos ambientes está ligada a capacidade de degradar uma ampla gama de compostos orgânicos, como celulose e potencialmente tóxicos (YOON et al.. 2010; TOMCZYKcompostos ŻAKZIELENKIEWICZ, 2016; HOREMANS et al., 2017). Estas características podem ajudar a compreender a presença deste filo nas cavidades ferruginosas de S11B em Carajás, dado a possível elevada quantidade de matéria orgânica presente nessas cavidades, proveniente da entrada de animais e raízes. Estes microrganismos também possuem forte correlação com a presença de enxofre, a sua elevada abundância pode ser explicada pelo fato dessas cavidades apresentarem alta quantidade de guano de morcegos (MISRA; GAUTAM; ELANGOVAN, 2019; BANSKAR; MOURYA; SHOUCHE, 2016; SELVIN et al. 2020; DE LEON et al., 2018; SUN et al., 2019), o que resulta em elevado teor de enxofre e matéria orgânica.

A presença elevada de *Bradyrhizobium* no período seco e nas zonas fótica e penumbra pode estar relacionada a concentração material vegetal, como raízes, nas entradas das cavidades. Essas bactérias promovem simbiose com as raízes de plantas leguminosas disponibilizando nitrogênio assimilável pelas plantas, favorecendo o seu desenvolvimento (CEREZINI *et al.*, 2020). Em contraste, o gênero *Burkholderia* foi detectado principalmente no período chuvoso, nas zonas de penumbra e afóticas, o que pode ser explicado pela fotossensibilidade e a facilidade de proliferação de espécies do gênero *Burkholderia* em ambientes com presença de água (CAIRNS *et al.*, 2001; ONG *et al.*, 2017; HU *et al.*,2018). Há possibilidade de

haver uma maior disponibilidade de material orgânico nas cavidades em períodos chuvosos, visto que materiais, como raízes, sementes e excremento de diversos animais, podem ser levados para dentro das cavernas através do escoamento da água.

O filo Acidobacteria foi detectado em maior abundância no período seco. Este filo é ubíquo e extremamente abundante em ecossistemas terrestres, e podem compor cerca de 50% da comunidade bacteriana de solos em todo globo (KURAMAE; DE ASSIS, 2019). Foi possível detectar este filo em solos salinos (ZHAO et al., 2020), reservatórios de água potável (HAN et al., 2020), cavernas (TURRINI et al., 2020) e em drenagens ácidas de minas (VILLEGAS-PLAZAS; SANABRIA; JUNCA et al., 2020). Estudos recentes sugerem que os componentes deste filo são capazes de metabolizar polissacarídeos de difícil degradação como a xilana, quitina e celulose, além disto, possuem capacidade para disponibilizar ferro no processo nutricional de plantas (WARD et al., 2009; RODRIGUES et al., 2020). A versatilidade para metabolizar uma variedade de substratos acarreta a este filo, vantagem competitiva mesmo em ambientes com pouca disponibilidade de nutrientes. (KURAMAE; DE ASSIS, 2019), entretanto em meios líquidos as acidobactérias apresentam capacidade reduzida na degradação de polissacáridos, indicando a necessidade de uma matriz sólida para o crescimento deste filo (DE CASTRO et al. 2013). As características elencadas dão suporte aos dados que indicam maior presença do de acidobactérias no período seco por possível redução na disponibilidade de água e nas amostras de penumbra e afótica por apresentaram matéria orgânica advinda especialmente de guano e matéria orgânica alóctone advinda da infiltração de raízes.

Na tentativa de elucidar como as estações (seca e chuvosa) e as zonas (fótica, penumbra e afótica) atuam sobre os dez gêneros mais abundantes nas amostras, mapas de calor foram gerados utilizando a distância de *Bray-Curtis* pelo método MNDS (Figura 7). Nota-se uma redução na abundância dos gêneros *Alicyclobacillus* (Firmicutes), *Arthrobacter* (Actinobacteria) e *Massilia* (Proteobacteria) no período seco. Estes gêneros tendem a ser favorecidos na presença de água, e isto pode ter influenciado a sua redução no período seco (HUANG *et al.*, 2015; TORRES-CORTÉS *et al.*, 2012; PATHAK; JASWAL; CHAUHA, 2020). Quanto as zonas (fótica, penumbra e afótica), observou-se que o gênero *Alicyclobacillus* possui maior abundância na zona afótica em relação as outras duas zonas de iluminação avaliada. É interessante ressaltar que bactérias deste gênero são susceptíveis a incidência de luz (ZHAI *et al.*,

2020). É valido ressaltar também que tanto *Alicyclobacillus* spp. quanto *Arthrobacter* spp., são quimioorganotróficas, aeróbios, ácido-tolerantes e possuem capacidade para utilizar o ferro ferroso e enxofre como doadores elétrons (GOTO *et al.*, 2007; COMI; CANTONI, 2011; GUO *et al.*, 2009; ROY; KUMAR 2020). Enquanto, *Arthrobacter* spp , como por exemplo a espécie *Arthrobacter agilis*, possui capacidade para reduzir ferro férrico disponível no solo, viabilizando ferro para o processo nutricional de plantas (OROZCO-MOSQUEDA *et al.*, 2013), *Alicyclobacillus* spp., podem fazer a dissolução redutiva de óxidos de ferro férrico, que combinada com o transporte de massa de ferro ferroso solubilizado pela água subterrânea, pode contribuir para a formação dessas cavidades (PARKER *et al.*, 2017).

Cavernas

Figura 7 - Mapas de calor baseados na abundância dos 10 gêneros microbianos mais abundantes presentes nas cavidades do corpo S11B da Serra de Carajás, contrastando os períodos seco e chuvoso (A) e nas zonas fótica, afótica e penumbra (B)

Fonte: elaborado pelo autor (2021).

Com intuito de avaliar a relação entre variáveis dimensionais das cavernas e a abundância de filo (Figura 8) e gênero (Figura 9) para os períodos sazonais (chuvoso e seco) e para as diferentes zonas de iluminação (fótica, penumbra e afótica), foi realizada uma análise baseada na correlação de *Pearson*. Esta análise gerou valores de correlação (Apêndice D, Tabelas 12-15) que indica se houve ou não influência das variáveis físicas na composição da microbiota. Apresentando correlação significativamente com os parâmetros de dimensões físicas das cavidades em relação ao período chuvoso, os filos Thaumarchaeota e Deinococcus-Thermus demonstraram ter uma correlação positiva em relação as zonas afótica e fótica, respectivamente. O filo Thaumarchaeota é conhecido por oxidar amônia e ocorre em ambientes oligotróficos (ZHAO et al., 2019), e isto poderia explicar a correlação deste filo com a zona afótica, possivelmente pela presença de guano dentro das cavernas, dado que a amônia pode ser encontrada em altas concentrações no guano (DOĞRUÖZ-GÜNGÖR, 2020). O filo Deinococcus-Thermus possui integrantes produtores de carotenoides e isto confere a estes microrganismos resistência a radiação ultravioleta e raios γ, e a altas temperaturas (TIAN; HUA et al., 2010). A presença deste filo associado a entrada das cavernas (zona fótica) e ao período chuvoso, sugere que a incidência de água na superfície está levando estes microrganismos para a entrada das cavidades, já que integrantes destes filos já foram descritos como abundantes em solos de canga (RAM et al., 2020)

No período seco uma forte correlação foi observada com o filo Firmicutes. Membros do deste filo são amplamente encontrados em solos rizosféricos e são caracterizados como bactérias promotoras de crescimento em plantas, mesmo sob condições ambientais distintas (altas temperaturas, altos teores de metais ou salinidade) (HASHMI; BINDSCHEDLER; SASKIA, 2020). *Bacillus* foi o gênero mais positivamente correlacionado ao período seco, principalmente na zona de penumbra. Atributos físíco-químicos, como área, pH, desnível e volume, também parecem influenciar na abundância desse grupo. Quanto aos demais gêneros, os microrganismos que apresentaram forte relação com o período de redução de chuvas foram as proteobactérias, *Dyella* e *Stenotrophomonas*. As análises também indicaram que os dois gêneros estão fortemente relacionados com a zona de penumbra. *Dyella* spp. podem ser redutores de nitrato dependendo da espécie e são principalmente isoladas de solo (WEON *et al.*, 2009; CHEN *et al.*, 2016). Características que também podem ser encontradas em *Stenotrophomonas* spp., uma vez que são ubíquos,

descritos como importantes organismos do ciclo do nitrogênio e enxofre (RYAN *et al.*, 2009; AN; BERG, 2018). Já o gênero *Solirubrobacter*. foi o único a apresentar correlação negativa com significância para o mesmo período e zona afótica. Essas bactérias auxiliam no crescimento de plantas (FRANKE-WHITTLE *et al.*, 2015) e possuem crescimento ótimo em ambiente com disponibilidades de açúcares (WHITMAN; SUZUKI, 2015), o que pode ser afetado pela estação seca e principalmente na zona afótica das cavernas estudadas.

Figura 8 - Correlograma de Pearson entre variáveis físicas (altitude, área, desnível, projeção horizontal, pH e volume) e os filos encontrados nas análises de 16S rRNA em solos das cavidades estudadas, por estações (seca e chuvosa) (A); e por zona de amostragem (fótica, penumbra e afótica) (B). Valores de significância: 0.001 (***), 0.01 (**), 0.05 (*).

Fonte: elaborado pelo autor (2021).

Figura 9 – Correlograma de Pearson entre variáveis físicas (Altitude, área, desnível, projeção horizontal (PH) e volume) e gêneros encontrados nas análises de 16S rRNA em solos das cavidades estudada, por estações (seca e chuvosa) (A); e por zona de amostragem (fótica, penumbra e afótica) (B). Valores de significância: 0.001 (***), 0.01 (**), 0.05 (*).

Groups

Fonte: elaborado pelo autor (2021).

Correlacionado positivamente com os períodos chuvoso e seco, encontram-se actinobactérias *Streptacidiphilus*, principalmente nas zonas de penumbra e afótica, e *Rhodococcus*, em todas as zonas avaliadas. Já os gêneros *Actinomadura* e *Aciditerrimonas*, também pertencentes ao filo Actinobactéria, apresentaram correlação negativa com o período das chuvas e zona afótica, quando relacionadas as dimensões das cavidades de S11B estudas. De forma geral, observa-se que alguns táxons destoaram desta observação geral como citado acima, demonstrando que alguns grupos com papeis ecológicos importantes podem ser afetados pelos paramentos dimensionais das cavidades estudadas.

As análises detectaram a presença dos filos WPS-1 e WPS-2 candidate division condições analisadas, sãos filos poucos explorados e com informações incipientes na literatura. A presença do filo WPS-1 candidate division está relacionada a amostras rizosfera, sistemas de abastecimento de água, e em ambientes extremos como cavernas e lagos de um complexo vulcânico (CALVILLO-MEDINA *et al.*, 2019; ADDESSO *et al.*, 2020; ZHAO *et al.*, 2020; LUPWAYI et., 2020). Estudos demonstram que WPS-1 é susceptível a presença de ao cloro, e níveis baixos de umidade no solo (ZHAO *et al.*, 2020; SÀNCHEZ-MARAÑÓN *et al.*, 2017). O filo pode ser importante indicador ambiental sugerindo que que a distribuição deste filo foi semelhante nas zonas e estações estudadas, apontando este filo como indicador da variação de umidade no solo nas diferentes estações e zonas.

O filo *candidate Division* WPS-2 ou *Candidatus* Eremiobacterota (JI *et al.*, 2017) foi detectado em amostras de solo contaminado por bifenilpoliclorado, solos risozféricos, em amostras de solo na Antártida, sedimentos do mar profundo, em corais e ambientes cavernícolas (NOGALES *et al.*, 2001; DE ARAUJO *et al.*, 2019; KIM *et al.*, 2019; NG; CHIU, 2020; DE MANDAL; CHATTERJEE; KUMAR, 2017; ADDESSO *et al.*, 2020).

A abundância do filo WPS-2 está correlacionada positivamente com disponibilidade de cobre, ambientes superficiais de pH ácido e elevados teores de ferro, associando isto sua presença a capacidade organoheterotrófica e litotrófica, e a coocorrência com os filos Chloroflexi e Actinobacteria, demonstrando que estes podem ser possíveis aliados ecológicos (SHEREMET *et al.*, 2020; Li *et al.* 2016; SUN *et al.*, 2016; KIM *et al.*, 2019). De Castro *et al.*, (2016) avaliou a microbiota associada ao solo do cerrado, e os resultados indicam que este filo sofre redução na abundância

em períodos chuvosos, entretanto Vieira *et al.*, 2018 demostrou que, em solos de canga a presença deste filo foi influenciada positivamente em períodos chuvosos.

No geral, 95,8% dos filos e 96% dos gêneros detectados neste estudo foram comuns entre as estações seca e chuvosa (Figura 10). Considerando os diferentes tipos de zonas, 87,5% dos filos e 92,6% dos gêneros estão presentes em ambas as zonas avaliadas (Figura 10). Estes resultados mostram que apesar das diferenças apresentadas nas figuras anteriores, a maior parte dos táxons são comuns a todas as variáveis de luz e sazonalidade analisadas, demonstrando que estes ambientes possuem semelhança quanto a presença de microrganismos.

Fonte: elaborado pelo autor (2021).

Todos os filos e gêneros únicos identificados para as estações e zonas, possuem baixa abundância (Tabela 4) entre as amostras. Detectado somente na zona fótica, o filo Spirochaetae é formado por microrganismos quiomioheterotróficos, ubíquos e incluem integrantes patogênicos de animais e humanos, podem ser parasitas ou saprofíticos. Dentre os gêneros encontrados unicamente na zona fótica (*Caldilinea*; *Bergeyella*; *Ferruginibacter*; *Spirochaeta*) apenas o *Spirochaeta* não foi

exclusivo do período chuvoso. Frequentemente encontrados em solos úmidos, são importantes produtoras de antibióticos e são associadas à presença de água e ferro, (SUN *et al.*,2018; GUO *et al.* 2020; THIEL *et al.*, 2019; LI *et al.*, 2018; XIA, *et al.*, 2019; ZHAO *et al.*, 2021; BRESCIA; PERTOT; PUOPOLO, 2020; VAN KENHOVE *et al.*, 2019;). Essas características dão suporte a detecção destes filos no período chuvoso, uma vez que o aumento de chuvas pode acarretar na elevação da umidade do solo. Além disto, pode ocorrer uma elevação na quantidade de matéria orgânica disponível na entrada das cavernas devido a possíveis enxurradas causadas pela chuva.

O filo Elusimicrobia foi exclusivamente detectado no período das secas. Microrganismos pertencentes a esse filo são de vida livre e com uma alta flexibilidade metabólica (MÉHEUST *et al.*, 2020). Já os gêneros exclusivos a este período foram *Gordonibacter*. (Actinobacteria), *Syntrophus*. (Proteobacteria) e *Odoribacter* (Bacteroidetes). Esses gêneros, assim como o *Anaerofustis*, encontrado unicamente na zona afótica, são encontrados em amostras intestinais de humanos e animais como ratos (NGOM *et al.*, 2020; TRINH *et al*, 2021, LIN, *et al.*, 2016; ZHANG *et al.*, 2019). A presença destes gêneros, especificamente na estação seca, pode indicar a presença de animais nas cavernas com maior frequência nesta época do ano.

	Filos						
Esta	Estação Zona						
Se	co	Fótica	Penumbra e Afótica		Fótica e Penumbra		
Elusimicrobia		Spirochaetes	Elusimicrobia		Latescibacteria		
			Gêneros	;			
Esta	ção			Zona			
Chuvoso	Seco	Fótica	Afótica	Fótica e Afótica	Penumbra e Afótica	Fótica e Penumbra	
Hymenobacter	Gordonibacte r	Caldilinea	Anaerofusti s	Deinococcu s.	Gordonibacter	Hymenobacter	
Lysobacter	Syntrophus.	Bergeyella.			Thermus	Clostridium_XVIII	
Caldilinea	Odoribacter	Ferruginibacte r			Syntrophus	Providencia	
Bergeyella		Spirochaeta			Aquisalimonas.	Rubrobacter	
Ferruginibacte r					Truepera.		
Legionella					Legionella Carboxydotherm us		

Tabela 4 – Filos e	gêneros encontrado	s apenas em uma	estação	(chuvosa,	seco),	zona	(fótica,
penumbra e afótica)	ou em comum entre a	as zonas de ilumina	ição.				

Fonte: elaborado pelo autor (2021).

4.2 ANÁLISE DE ESTRUTURA E REDES MICROBIANAS PARA AS CAVIDADES FERRUGINOSAS

Com intuito de compreender a disposição e interligação entre os pontos amostrados nos períodos de chuva e seca e nas zonas fótica, penumbra e afótica, gráficos de *networking* foram gerados. De acordo com a figura 11A, uma estrutura central é formada a partir das amostras coletadas no período seco, sugerindo uma semelhança maior entre essas amostras. Em relação as zonas, observa uma forte interação entre as três zonas, no entanto, amostras coletadas na penumbra parecem ser mais interligadas entre si (Figura 11 B).

Figura 11 – Gráficos networking construídos a partir do total de OTUs geradas, para a visualização da disposição e interligação dos dados referentes as amostras do solo presente nas cavernas do corpo S11B, da Serra de Carajás. As construções dos gráficos levaram em consideração a distribuição quanto às estações chuvosa e seca (A) e às zonas fótica, afótica e de penumbra (B).

Fonte: elaborado pelo autor (2021).

Em relação à estrutura dos filos nas comunidades microbianas das cavidades de Carajás, a análise de *networking* mostrou que na estação chuvosa, quatro filos dão suporte ao agrupamento principal, Acidobacteria, Actinobacteria, Firmicutes e Proteobacteria (Figura 12A), enquanto que estação seca o agrupamento principal se dá por Acidobacteria e Proteobacteria (Figura 12B). Para as zonas foi observado que na faixa fótica têm-se dois grupos principais, o primeiro formado por Acidobacteria e Proteobacteria que estão mais interligados, enquanto o segundo grupo é formado pelos filos Actinobateria e Firmicutes (Figura 13A). Nas zonas de penumbra e afótica observam-se que Acidobacteria e Proteobacteria formam o grupamento principal (Figura 13B e C).

Em estudos anteriores, esse padrão de coocorrência entre os filos Protebacteria e Acidobacteria, e padrões de co-exclusão destes dois últimos filos com Actinobacteria já foram observados em solos sob cultivo de cana-de-açúcar (DURRER *et al.*, 2017). O contrário também já foi notado, de acordo com KAVAMURA *et al.*, (2013), as actinobactérias prevalecem sobre as proteobactérias e acidobactérias em solos semiáridos sob condições estressantes de chuvas. Também foram observadas correlações negativas entres estes filos, em amostras obtidas a partir de solos desérticos (XU *et al.*, 2014). De modo geral, uma mudança na dinâmica das comunidades em relação as diferentes estações e zonas foi observada neste trabalho, entretanto os filos Proteobacteria e Acidobacteria permanece no centro da estrutura dessas comunidades. Estes grupos base estabelecem uma interação entre os microrganismos caracterizando em uma conexão constante.

Figura 12 – Gráficos *networking* construídos a partir dos filos detectados, para a visualização da disposição e interligação entre este grupo táxons microbianos existentes no solo das cavernas do corpo S11B, da Serra de Carajás. As construções dos gráficos levaram em consideração a distribuição em relação as estações chuvosas (A) e seca (B).

Fonte: elaborado pelo autor (2021).

Figura 13 – Gráficos networking construídos a partir dos filos detectados, para a visualização da disposição e interligação entre este grupo táxons microbianos existentes no solo das cavernas do corpo S11B, da Serra de Carajás. As construções dos gráficos levaram em consideração a distribuição quanto às zonas fótica (A), penumbra (B) e afótica (C).

Fonte: elaborado pelo autor (2021).

Em trabalho realizado por Addesso *et al.*, (2020), em vermiculações (depressões nas rochas com aspecto vermiforme) de cavernas localizadas no sul da Itália, apresentam predominantemente o filo Proteobacteria, seguido de Acidobactéria e Actinobacteria. Este trabalho demonstra que os filos trabalham em sintrofia para reações de oxidação-redução de rochas, levando ao surgimento das vermiculações. O mesmo foi observado por Meisinger *et al.*, (2007), demonstrado que em ambiente cavernícolas os filos Acidobacteria e Proteobacteria trabalham em sintrofia quando associadas as rochas de cavernas, proteobactérias podem produzir compostos orgânicos reduzidos através de processos quimioorganotróficos quimiolitotróficos e fototróficos, e as acidobactérias utilizam estes produtos como fonte de carbono, além da utilização de ferro férrico associados à matriz das rochas como fontes de elétrons.

A configuração de redes nas diferentes estações (seca e chuvoso) e zonas (fótica, penumbra e afótica), sugerem que estes microrganismos possuem metabolismo complementar, desta forma contribuindo para a estruturação das comunidades microbianas em diversos ambientes (BARBERÁN *et al.*, 2012). Isto pode ter relação com a reciclagem de matéria orgânica, que pode ser de difícil degradação, visto que os filos Actinobacteria, Proteobacteria e Acidobacteria são metabolizadores de polissacarídeos como celulose e xilana, compostos comumente encontrados em raízes que podem estar presente nas cavidades como matéria orgânica alóctone, além disto, são microrganismos degradadores de quitina, composto que pode ser originário de fontes como fungos, carcaça de insetos em decomposição e guano de morcego. O processo de sintrofia dentro das cavidades estudadas pode correr de maneira rebuscada, trabalhando a matéria orgânica de difícil acesso, afim obter energia para o crescimento dos próprios microrganismos e disponibilizar compostos, resíduos destas transformações, como nutrientes de fácil absorção por outros microrganismos.

4.3 ANÁLISE ALFA-DIVERSIDADE DE MICRORGANISMOS POR METABARCOGING 16S rRNA

A análise de riqueza foi realizada através do estimador de Chao1 (CHAO, 1984) e da diversidade de espécies pelo índice de Shannon-Wiener (H') (Figura 14). Os valores para os índices de diversidade alfa para cada amostra estão listados no Apêndice C Tabela 11. Através da análise dos índices de alfa diversidade obtidos para as cavidades subterrâneas, é possível notar que a diversidade e riqueza de táxons entre as cavidades estudadas se dá de forma heterogênea, ou seja, a priori, pode-se considerar que há variação na diversidade e riqueza de táxons entre as cavernas. Os resultados da análise de variância (ANOVA) apresentou valores de p-value = 0.000113 para o índice de Shannon e p-value = 2.92e-06 para o estimador de riqueza Chao1, indicando que houve diferenças significativas entre as cavernas estudadas, assim como o teste post-hoc Tukey.

Fonte: elaborado pelo autor (2021).

A caverna 05 (S11B_0177) apresentou maior riqueza e diversidade, enquanto que a caverna 08 (S11B_0212) apresentou os menores índices (Tabela 5). A cavidade 08 (S11B_0212) foi a única, dentre as cavidades estudadas neste trabalho a apresentar sedimentação clástica ou química, além disto, em todas as cavernas ocorrências significativas de espécies de morcegos insetívoros, espécies de polinizadores e dispersores de sementes foram descritas, com exceção da caverna 08 (S11B_0212) que não apresentou populações polinizadoras e dispersoras de sementes (MACIEL *et al.*, 2019). Esta característica da cavidade pode ter influenciado no baixo índice de diversidade das cavernas quando comparada as demais cavidades estudadas neste trabalho, uma vez que a ausência destas espécies (morcegos, polinizadores e dispersores de sementes) podem afetar o fluxo de matéria orgânica dentro das cavernas.

Tabela 5 – Indicies de alfa diversidade para as cavidades estudadas no corpo geológico S11B	da Serra
de Carajás. Onde os índices a, b, e c representam das diferenças mínimas significativas, entre	a menor
e a maior média calculada para os indies de diversidade, pelo teste Tukey.	

Caverna	Shannon	Chao1
S		
CAVE_0	4.305.349 ^{ab}	13.339.165 ^{bc}
1		
CAVE_0	4.528.916 ^{ab}	16.974.589 ^{ab}
2		
CAVE_0	4.488.555 ^{ab}	16.175.726 ^{abc}
3		
CAVE_0	4.638.694ª	17.933.772 ^{ab}
4		
CAVE_0	5.141.659ª	23.774.410ª
5		
CAVE_0	4.939.045ª	18.463.254 ^{ab}
6		
CAVE_0	4.995.711ª	21.691.003 ^{ab}
		0 000 750-
CAVE_0	3.673.0530	8.698.756°
ð OAVE O	4 000 070-	04 007 774
CAVE_0	4.969.979 ^a	21.22/.//4 ^{ab}
9		

Fonte: elaborado pelo autor (2021).

A estação seca obteve índices de riqueza e diversidade mais elevados que a estação chuvosa (Tabela 6). Os valores de p-value obtidos através da ANOVA demonstraram que não houve diferenças significativas de riqueza de espécies (p value = 0.295), entretanto o resultado aponta para uma diferença significativa quanto diversidade de táxons (p-value = 0.00672) entre os diferentes períodos de sazonalidade de chuvas. O teste post-hoc Tukey também indicou que houve diferenças significativas no índice de diversidade de espécies entre as coletas realizadas no período chuvoso e seco.

Tabela 6 – Indicies de alfa diversidade para as estações estudadas. Onde os índices a, b, e c representam das diferenças mínimas significativas, entre a menor e a maior média calculada para os índices de diversidade, pelo teste Tukey.

Estação	Shannon	Chao1		
Seco	4.867.054ª	1.858.555ª		
Chuvoso	4.422.415 ^b	1.699.678ª		

Fonte: elaborado pelo autor (2021).

Através destes resultados, é possível inferir que o período seco apresenta maior diversidade de espécies dentro das cavidades analisadas neste estudo. De acordo com a literatura, períodos chuvosos elevam a umidade relativa do ar e do solo na região amazônica, o que pode gerar impactos significativos na microbiota do solo (GUIMARAES et al. 2020, HOFFMANN et al., 2018), entretanto cavernas apresentam estabilidade quanto a umidade e temperatura mantendo o microclima interno com poucas variações (CAMPOS e CASTILHO 2012). O trabalho realizado por Paula (2019), com cavidades tropicais na região do Brasil central, demonstrou não haver diferenças significativas nas comunidades bacterianas em relação a variação de sazonalidade de chuvas. Por outro lado, uma pesquisa realizada por Davis et al., (2020) em cavernas do continente europeu, na Itália, mostrou que os períodos chuvosos e secos exercem influência na estrutura da comunidade microbiana, neste estudo havia um sistema de escoamento nas cavernas e essa característica proporcionou mudanças na estrutura da comunidade microbiana. Outro trabalho realizado com amostras de água de um sistema cárstico de cavernas, na região de Emilia Romagna, na Itália, mostrou que houve flutuações quando a composição de microrganismos em diferentes estações do ano (D'ANGELI et al., 2017). Torna-se valido ressaltar que as cavernas estudas possuem porosidade nas rochas que as constituem, além disto, a própria localização das cavernas acompanhando o declínio do terreno em que se encontram, torna-as propicias a mudança na diversidade de microrganismos pela variação no período de chuvas.

A zona afótica apresentou os menores índices de diversidade e riqueza em relação as outras zonas (Tabela 7). A diversidade de táxons teve pouca variação entre as amostras considerando as zonas não apresentando diferença significativa entre elas (p-value = 0.0765). Entretanto houve uma diferença significativa em relação a riqueza de espécies (p-value = 0.0323). O teste post-hoc Tukey, indicou que houve diferenças significativas quanto a riqueza de espécies na zona afótica quando comparada à zona de penumbra.

Tabela 7 - Indicies de alfa diversidade para as zonas estudadas. Onde os índices a, b, e c representam das diferenças mínimas significativas, entre a menor e a maior média calculada para os índices de diversidade, pelo teste Tukey.

Zona	Shannon	Chao1
Fótica	4.798.244ª	1.856.503 ^{ab}
Penumbra	4.757.527ª	1.973.664ª
Afótica	4.384.241ª	1.515.121 ^b

Fonte: elaborado pelo autor (2021).

Os resultados sugerem uma mudança quanto a riqueza de espécies nas zonas de iluminação, indicando que a redução total de luz no ambiente cavernícola implica na atenuação significativa da presença de microrganismos fotossintéticos, o que pode acarretar na baixa da riqueza de espécies nestes ambientes. Em 2015 Coombes et al., investigou cavernas cársticas, formadas principalmente por intemperismo químico em rochas carbonáticas nas Filipinas, e um dos resultados da pesquisa constatou que conforme a amostra coletada distanciava-se da entrada da caverna a abundância de táxons sofria redução, principalmente dos microrganismos fototróficos. No Brasil, o estudo sobre a diversidade microbiana de cavernas realizado por Paula (2019), mostrou que a diversidade é menor em amostras coletadas no subterrâneo das cavidades, entretanto a riqueza nesses ambientes foi significativamente maior. Estudos realizados por D'angeli et al., (2020), em uma caverna carbonática na ilha de San Salvador nas Bahamas, para investigar se a redução da intensidade de luz afetava a comunidade microbiana dentro da cavidade, demonstrou que a atenuação da luz afeta fortemente o comportamento da microbiota interna da caverna. Entendese que a incidência de luz dentro das cavidades atua como pressão seletiva pra comunidades microbianas, e a redução da diversidade e riqueza dos táxons principalmente na zona afótica da caverna, pode ser explicada pelo fato de que grande parte da comunidade microbiana tem como principal fonte de carbono orgânico os produtos gerados pela fotossíntese (WU et al., 2015).

4.4 ANÁLISE DE BETA-DIVERSIDADE COM BASE METABARCODING 16S rRNA

Cavidades subterrâneas são consideradas ambientes extremamente estáveis quanto as suas características, como por exemplo à umidade relativa do ar durante o ano (CAMPOS e CASTILHO 2012). Entende-se que as dimensões de caverna e perímetro em que essas cavidades estão localizadas, podem ter influência na biodiversidade interna (JAFFE *et al.*, 2016). Desta forma, afim de avaliar se houve agrupamento de táxons nas diferentes condições propostas neste trabalho, foram realizadas as análises de multivariada NMDS (Figura 15). O valor de estresse da análise NMDS foi igual à 0.1275957 e R² igual à 0,985, indicando que o modelo da ordenação é confiável.

Foi observado uma sobreposição no agrupamento de táxons nas estações seca e chuvosa, o mesmo foi observado para as diferentes zonas de luminosidade. Apesar de não se notar agrupamento de táxons evidente, percebe-se uma tendência no agrupamento de táxons encontrados em cavernas com área ≤ 1000 m² e volume ≤ 2000 m³. Afim de avaliar se houve diferenças significativas na distribuição espacial de táxons entre os grupos testados, foi realizada uma PERMANOVA. Além dos grupos expostos na figura 9, o cálculo foi realizado para outros atributos físicos das cavidades, como: desnível e projeção horizontal das cavernas.

Todos as variáveis (zona, estação, área, volume, desnível e projeção horizontal) apresentaram diferenças significativas quanto a distribuição espacial de táxons e distância dos centroides (Tabela 8). Entretanto os valores de F e R² mostram que houve baixa correlação das variáveis com a distribuição dos táxons, o que pode ser evidenciado pela sobreposição entre as zonas (fótica, penumbra e afótica) e estação (chuvoso e seco), por exemplo. Isto significa que a pesar de haver um agrupamento de táxons para variáveis testadas, esse agrupamento está sobreposto, ou seja, não houve de fato diferenças significativas.

Figura 15 – Analise de multivariada (NMDS) baseada na relação de agrupamento das cavidades do corpo geológico S11B, na Serra de Carajás, com relação as estações seca e chuvosa (A), as zonas fóticas, afóticas e de penumbra (B) e paramentos físicos das cavidades como área (C) e volume (D).

Fonte: elaborado pelo autor (2021).

Desta forma um outro teste foi aplicado para avaliar se houve diferença entre distância média do centroide de cada grupo dentre as variáveis estudadas, ou seja, uma forma de avaliação da diversidade beta entre os grupos de cada variável. O teste PERMIDISP foi aplicado seguido do teste a posteriori de Tukey para confirma se houve diferenças entres as distâncias médias dos centróides de cada grupo. Os resultados obtidos indicam que não houve diferenças entres as distâncias para nenhuma variável estudada (Tabela 8).

Variáveis	P	PERMANOVA			PERMDISP	
	f-value	R ²	p-value	f-value	p-value	
Zona	2.6867	0.05301	1,00E- 04	1.39	0.2534	
Estação	2.7062	0.02714	6,00E- 04	0.601	0.4399	
Área	2.8035	0.02809	4,00E- 04	1.849	0.07806	
Volume	2.8869	0.0289	3,00E- 04	1.849	0.07806	
Desnível	2.4757	0.02489	0.0012	1.849	0.07806	
Projeção Horizontal	2.5046	0.02517	7,00E- 04	1.849	0.07806	

Tabela 8 - Valores obtidos a partir das análises de PERMANOVA e PERMDISP, para as variáveis de zonas, estações, diferentes áreas, volumes, projeções horizontais e desníveis das cavidades.

Fonte: elaborado pelo autor (2021).

Para facilitar a visualização entre as distâncias calculadas para os grupos contidos em cada variável, *boxplots* foram gerados (Figura 16). Na figura estão dispostas as estações seca e chuvosa; as zonas fótica, afótica e penumbra; as áreas sendo a menor medindo 142,88 m² e a maior 2218,36 m²; os volumes sendo o menor de 113 m³ e o maior volume de 4241 m³; as projeções horizontais sendo a menor projeção a de 44,59 m e a maior de 3667,03 m; e por fim as medidas de desníveis para cada cavidade, onde o menor desnível possui 1,26 m e o maior 34,47 m. Observa-se que as médias dos centroides para os grupos de cavidades que possuem áreas de projeções horizontais maiores que 130 m e desníveis partir de 7 m, tendem a ser mais similares.

A partir destes resultados, pode-se inferir que há uma baixa diferença na variação da distribuição espacial de táxons entre as diferentes zonas de iluminação nas cavidades, estações e atributos físicos, ou seja, existe uma influência destes parâmetros, mas não significativa. Ou seja, não houve variações significativas em

relação a estrutura das comunidades microbianas nas diferentes zonas, estações, e entre os parâmetros físicos estudados. Desta forma, é possível inferir que o interior das cavidades ferruginosas localizadas na Serra Sul, corpo S11B, da Floresta Nacional de Carajás, mostra uma comunidade microbiana estável quanto a beta diversidade.

Figura 16 – *Boxplot* gerado a partir da distância média dos centroides de cada grupo dentro das variáveis de estação (A), zona (B), área (C), volume (D), projeção horizontal (E) e desnível (F).

Fonte: elaborado pelo autor (2021).

4.5 POTENCIAL FUNCIONAL PARA AS CAVIDADES DA FLONA

As potencias funções comuns a todas zonas e período de chuvas foram: fixação de nitrogênio, quimioheterotrofia aeróbia, ureolise, degradação de hidrocarbonetos e compostos aromático, e processos ligados a perda de nitrogênio para a atmosfera (no gráfico 17 representados como *denitrification*, *nitrate respiration* e *nitrogen respiration*), mostrando que os processos microbianos nestas cavidades estão diretamente relacionados com a ciclagem do nitrogênio e processos quimiorganotróficos (Figura 17).

As análises indicaram que processos fotoautotróficos, fotoheterotróficos e do metabolismo ligados a oxidação do enxofre, apresentaram distribuição diferentes entres as zonas de iluminação. Por exemplo, no período seco não foram detectados os processos citados anteriormente nas amostras da zona afótica, com exceção das amostras da cavidade 04 (S11B_0080). Este resultado é esperado, visto que processos fotossintéticos tendem a diminuir na zona afótica, entretanto a detecção destes processos na caverna 08 (S11B_0800), pode ter relação com os parâmetros dimensionais da cavidade, dado que, está caverna é a menor em área e volume, dentre as cavernas estudadas. Por outro lado, durante o período chuvoso as cavidades 01 (S11B_0036) e 02(S11B_0055) não indicaram a presença dessas funções na zona fótica, mas sim nas zonas de penumbra e afótica. Este resultado pode indicar que bactérias que apresentam essas capacidades metabólicas foram levadas para o fundo destas cavernas devido a incidência de chuvas.

No período seco as funções mais abundantes foram nitrificação e oxidação aeróbia de nitrato, para todas as zonas, e atividades metanotróficas e metilotróficas para as zonas fóticas durante o período seco. Além disto, foram identificadas atividades ligadas a quitinólise exclusivamente no período chuvoso e na zona fótica da cavidade 03 (S11B_0073). Curiosamente nesta caverna foi encontrada uma população de artrópodes tróglobios com um elevado número de indivíduos (MARCIEL *et al.,* 2019). Estas espécies em sua maioria são revestidas de quitina, que por sua vez é o principal substrato de enzimas quitinases, principal enzima envolvida no processo de quitinólise enzimática de bactérias e fungos (HARĐARDÓTTIR *et al.,* 2019).

Os resultados obtidos no presente trabalho, indicam que o potencial funcional das cavidades estudadas está diretamente ligado ao ciclo do nitrogênio, o que pode ter relação com a abundância e a sustentação da comunidade microbiana, ou seja,

com as proteobactérias (JURADO *et al.,* 2020). Também se observa a presença de atividade de ureolise, que mais uma vez é indicativo da presença de guano, uma vez que este contém até 80% de ácido úrico em sua composição (*SAKOUI et al., 2020*). Torna-se valido ressaltar que bactérias com potencial ureolíticos possuem capacidade para precipitação e resistências a metais como ferro nos ambientes em que se encontram (GOMMA, 2018).

Em cavernas de Mizoram, localizadas no nordeste da Índia, os principais genes descritos como base no potencial fisiológico da comunidade microbiana foram ligados ao ciclo do nitrogênio, como os de redução do nitrato, nitrificação e assimilação de amônia. Também foram identificados outros genes responsáveis pela fixação e degradação do carbono (DE MANDAL; CHATTERJEE; KUMAR *et al.*, 2017). Bendia *et al.*, (2020), em um estudo de avaliação da diversidade taxonômica e potencial funcional da caverna Monte Cristo, no Estado de Diamantina no Brasil, verificou uma diversidade elevada de genes relacionados a oxidação e redução de ferro, enxofre e nitrogênio. *Sabe -se que* as comunidades microbianas apresentam poucas fontes de carbono não recalcitrantes para a produção de energia. Desta forma, o nitrogênio pode se tornar a principal fonte de energia para a comunidade microbiana. Newsome *et al.*, (2021) indicaram que a comunidade microbiana colonizantes das rochas submersas de caverna no Reino Unido é mantida por processos de oxidação da amônia e nitrificação. Sugerindo que o ciclo do nitrogênio representa um importante papel dentro de ambientes cavernícolas.

A potencial fonte de nitrogênio dentro das cavidades do corpo S11B, na FLONA de Carajás, vem do guano. Este material possui um papel crucial para a sustentação da vida nas cavidades, já que é a base dos recursos tróficos tanto para fauna interna das cavidades quanto para microrganismos. É válido ressaltar que os grupos predominantemente encontrados em amostras de guano Actinobacteria e Proteobacteria, reforçando a presença de bactérias envolvidas no ciclo biogeoquímico do nitrogênio (DE MANDAL *et al.*, 2015; SAKOUI *et al.*, 2020)

Já os processos de degradação de hidrocarbonetos, detectados nas análises do software FAPROTAX, podem estar ligados à microrganismos redutores de nitrato e ferro dentro das cavidades estudadas, visto que a degradação de hidrocarboneto pode ocorrer de forma aeróbica ou anaeróbica utilizando nitrato, ferro férrico ou sulfato como os aceptores de elétrons (WIDDEL; MUSAT, 2010). De acordo com os resultados, grupos taxonômicos ligados ao processo de redução destes compostos para obtenção de energia foram detectados pela análise taxonômica (BASKAR *et al.*, 2009; ZHANG *et al.*, 2019; HURTADO *et al.*, 2020).

•

Figura 17 – Potencial fisiológico das comunidades microbianas encontradas nas cavidades da Serra Sul, Carajás. Comparação dos táxons detectados com dados fisiológicos obtidos por fonte pública de dados. O potencial filológico está dividido por estação (seca e chuvosa) e subdividido por zonas de iluminação (fótica, afótica e penumbra).

Cavernas

Fonte: elaborado pelo autor (2021).

Análises realizadas em cavernas do Quadrilátero Ferrífero por Parker *et al.* (2018), a fim de avaliar a capacidade ferro redutora de microrganismos, observou via *metabarcoding* 16S rRNA, que os filos Proteobacteria, Acidobacteria, e Chloroflexi estavam associados a redução de ferro férrico. Quando em cultura o filo Firmicutes mostrou-se mais abundante. Outro estudo do mesmo autor Parker *et al.* (2013) identificou nas cavernas ferruginosas na região de Carajás do no Pará, microrganismos capazes de reduzir ferro férrico. De acordo com o autor, estes microrganismos podem estar associados a formação ou biospeleogênese destas cavernas, uma vez que estas bactérias atuam na dissolução redutiva dos concentrados de Fe presente na composição destas cavernas.

Os grupos taxonômicos identificados em maior abundância e descritos nas análises iniciais deste trabalho, estão diretamente relacionados a utilização de matéria orgânica de difícil degradação, o que também pode explicar a detecção do metabolismo de degradação de hidrocarbonetos nas cavernas amostradas. A rigor, em ambientes cavernícolas, a falta de aporte de luz restringe a produtividade primária aos organismos quimiolitotróficos e quimiorganotróficos (MAMMOLA; ISAIA, 2018). Os microrganismos quimiolitotróficos exploram a produção de energia pela conversão da energia liberada pelas reações químicas no substrato e uso de elementos minerais como doadores e/ou aceptores de elétrons (BLAKE; WHITE, 2020). Essa atividade torna o substrato rochoso mais friável e sujeito a penetração de água ou raízes de plantas, fragmentando-se mais facilmente.

A produção líquida de matéria orgânica é inferior a produzida pela fotossíntese (DOKULIL, 2019), o que torna a matéria orgânica alóctone, como o guano, restos de raízes e folhas, e carcaças, a principal fonte de energia aos organismos quimiorganotróficos (microrganismos obtêm energia a partir de compostos orgânicos). A matéria orgânica disponível para os quimiorganotrofos de cavernas apresenta caráter recalcitrante, sendo formado basicamente por compostos derivados de celulose, presentes em raízes, e quitina, presente em exoesqueletos de artrópodes, e também no guano (DAI *et al.*, 2016; BAO *et al.*, 2019). Desta forma a indicação de degradação de hidrocarbonetos pelo FAPROTAX pode estar ligada a microrganismos que produzem enzimas que clivam compostos como a celulose, xilanas e compostos aromáticos como as ligninas, provenientes de matéria orgânica alóctone nas cavernas de S11B em Carajás. Torna-se interessante ressaltar que as enzimas que atuam sobre a

degradação de matéria orgânica recalcitrante, neste contexto, utilizam o Fe (III) ou o Cu (II) complexados às enzimas como facilitadores da clivagem de celulose e ligninas (LEMOS *et al.*, 2008; AGUIAR; FERRAZ, 2011; ITOH; KIMOTO, 2019; VARLAMOV *et al.*, 2020)

Os potenciais processos metabólicos em maior abundância detectados nas cavidades estudadas. estão relacionados а quimioheterotrofia aeróbia. Possivelmente, este resultado está relacionado as principais caraterísticas das cavidades estudadas, como a baixa luminosidade, fontes de matéria orgânica e elementos inorgânicas que podem ser utilizadas por estes microrganismos. Estes resultados são esperados visto que, ambientes de caverna possuem baixa produtividade primária, entretanto a presença de matéria orgânica alóctone, além da quantidade considerável de guano transforma-se nas fontes alternativas de carbono também para microrganismos que utilizam estratégias de produção não fotossintetizantes (DANG; CHEN, 2017). Pode-se observar na literatura, comunidades microbianas de cavernas que apresentam comportamento quimitróficos, como por exemplo no modelo de sustentação quimiotrófica em caverna é frequentemente observado em cavernas no mundo inteiro, através de análises baseadas em metabarcoding 16S rRNA (TURRINI et al., 2020). Recentemente, foi proposto um modelo de sustentação microbiana quimiotrófico para cavernas do sitio hidrotermal Zinzulùsa, que estão localizadas na Itália. O modelo foi proposto com base na presença de microrganismos anaeróbios que possivelmente exploram os depósitos de hidrocarbonetos como a principal finte de carbono (TALA et al., 2021). Demonstrando deste modo que em ambientes cavernícolas microrganismos utilizaram como fonte principal de carbono, matéria orgânica alóctone ou interna das cavidades, como guano

5 CONCLUSÕES

A investigação da composição das comunidades microbianas presentes nas cavidades ferruginosas de S11B – Canaã dos Carajás, podem auxiliar na geração de conhecimentos acerca da ecologia cavernícola, manutenção de organismos raros, indicar a saúde desse ecossistema, bem como potencial fonte de ferramentas biotecnológicas. Os dados levantados indicam que mais da metade dos microrganismos não são conhecidos pela ciência. Dentre os filos mais abundantes, Actninobacteria, Proteobacteria e Acidobacteria, foram observados microrganismos comumente encontrados (Actinomadura, Mycobacterium, em cavernas Bradyrhizobium e Burkholderia), com papel ecológico intimamente relacionados a ciclagem de nitrogênio, remineralização da matéria orgânica, bem como indicadores da presença de guano, tecido de insetos e a abundância de minerais como o ferro. Quanto a diversidade, os resultados indicaram que houve diferenças significativa entre as comunidades microbianas das diferentes cavidades amostradas, assim como entre as estações seca e chuvosa. Apesar de não haver diferenças significativa na diversidade entre as diferentes zonas de iluminação de uma mesma caverna, nem entre os atributos físicos levantados, análises de redes sugerem um dinamismo entre as comunidades presentes nas diferentes zonas e entre as estações, com os filos Acidobacteria e Proteobacteria, intermediando as conexões. Apesar do dinamismo das comunidades microbianas analisadas, os dados sugerem o potencial funcional microbiano baseia-se em quimioorgonotrofia com uma forte relação da comunidade com a ciclagem do nitrogênio.

REFERÊNCIAS

ADEN, E. Adaptation to darkness: In Encyclopedia of Caves, DC Culver and WB White. 2005.

ADDESSO, Rosangela et al. Microbial community characterizing vermiculations from karst caves and its role in their formation. **Microbial Ecology**, p. 1-13, 2020.

AGUIAR, André; FERRAZ, André. Mecanismos envolvidos na biodegradação de materiais lignocelulósicos e aplicações tecnológicas correlatas. **Química nova**, v. 34, n. 10, p. 1729-1738, 2011.

ALBUQUERQUE, Alan RL et al. Phosphate speleothems in caves developed in iron ores and laterites of the Carajás Mineral Province (Brazil) and a new occurrence of spheniscidite. **International Journal of Speleology**, v. 47, n. 1, p. 53-67, 2018.

AMASHA, R. H.; ALZAHRANI, N.; ALY, M. M. Effect of Nickel on Growth of some Actinomycetes Isolated from Three Caves in Saudi Arabia. **Prensa Med Argent S**, v. 2, p. 022, 2020.

AN, Shi-qi; BERG, Gabriele. Stenotrophomonas maltophilia. **Trends in microbiology**, v. 26, n. 7, p. 637-638, 2018.

ANDERSON, Marti J. A new method for non-parametric multivariate analysis of variance. **Austral ecology**, v. 26, n. 1, p. 32-46, 2001.

ANDERSON, Marti J.; ELLINGSEN, Kari E.; MCARDLE, Brian H. Multivariate dispersion as a measure of beta diversity. **Ecology letters**, v. 9, n. 6, p. 683-693, 2006.

ARAUJO, Ricardo et al. Biogeography and emerging Significância of Actinobacteria in Australia and Northern Antarctica soils. **Soil Biology and Biochemistry**, p. 107805, 2020.

AULER, Augusto S. et al. Iron formation caves: Genesis and ecology. In: Encyclopedia of Caves. **Academic Press**, p. 559-566, 2019.

BANSKAR, Sunil; MOURYA, Devendra T.; SHOUCHE, Yogesh S. Bacterial diversity indicates dietary overlap among bats of different feeding habits. **Microbiological Research**, v. 182, p. 99-108, 2016.

BAO, Yuanyuan et al. Bacterial communities involved directly or indirectly in the anaerobic degradation of cellulose. **Biology and Fertility of Soils**, v. 55, n. 3, p. 201-211, 2019.

BARBERÁN, Albert et al. Using network analysis to explore co-occurrence patterns in soil microbial communities. **The ISME journal**, v. 6, n. 2, p. 343-351, 2012

BARKA, Essaid Ait et al. Taxonomy, physiology, and natural products of Actinobacteria. **Microbiology and Molecular Biology Reviews**, v. 80, n. 1, p. 1-43, 2016.

BASKAR, Sushmitha et al. Speleothems from Mawsmai and Krem Phyllut caves, Meghalaya, India: some evidences on biogenic activities. **Environmental Geology**, v. 57, n. 5, p. 1169, 2009.

BENDIA, Amanda G. et al. Metagenome-assembled genomes from Monte Cristo Cave (Diamantina, Brazil) reveal prokaryotic lineages as functional models for life on Mars. **bioRxiv**, 2020.

BERDY, Janos. Bioactive microbial metabolites. **The Journal of antibiotics**, v. 58, n. 1, p. 1-26, 2005.

BHATT, Ami S. et al. Sequence-based discovery of Bradyrhizobium enterica in cord colitis syndrome. **New England Journal of Medicine**, v. 369, n. 6, p. 517-528, 2013.

BLAKE II, Robert C.; WHITE III, Richard A. In situ absorbance measurements: a new means to study respiratory electron transfer in chemolithotrophic microorganisms. In: **Advances in microbial physiology**. Academic Press, p. 81-127. 2020.

BRAR, Amanpreet K.; BERGMANN, David. Culture-based analysis of 'Cave Silver'biofilms on Rocks in the former Homestake mine in South Dakota, USA. International Journal of Speleology, v. 48, n. 2, p. 3, 2019.

BRASIL. Constituição da República Federativa do Brasil de 1988. Presidência da República.Dispinpivel em:

http://www.planalto.gov.br/ccivil_03/constituicao/constituicao.htm. Acesso em: 07 abril 2019.

BRASIL. Dá nova redação aos arts. 10, 20, 30, 40 e 50 e acrescenta os arts. 5-A e 5-B ao Decreto no 99.556, de 10 de outubro de 1990, que dispõe sobre a proteção das cavidades naturais subterrâneas existentes no território nacional. Decreto Nº 6.640, de 7 de Novembro de 2008. Disponível em: http://www.planalto.gov.br/ccivil_03/_Ato2007-2010/2008/Decreto/D6640.htm. Acesso em: 03 maio 2019.

BRASIL. Regulamenta o art. 225, § 10, incisos I, II, III e VII da Constituição Federal, institui o Sistema Nacional de Unidades de Conservação da Natureza e dá outras providências. Lei n. 9.985, de 18 de junho de 2000. Disponível em: http://www.planalto.gov.br/ccivil_03/LEIS/L9985.htm Acesso em: 07 abril 2019.

BRASIL. **Regulamento das Florestas Nacionais.** Decreto Nº 1.298, De 27 de Outubro de 1994. Disponível em: http://www.planalto.gov.br/ccivil_03/decreto/1990-1994/d1298.htm. Acesso em: 07 abril 2019

BRESCIA, Francesca; PERTOT, Ilaria; PUOPOLO, Gerardo.Chapter 16 - Lysobacter in: AMARESAN, N. et al. (Ed.). Beneficial Microbes in Agro-Ecology: Bacteria and Fungi. **Academic Press**, 2020.
BRIATTE, François, et al.. **ggnetwork.** 2020. Disponivel em:<swh:1:dir:2fd9a04dd1e69f719612d0d47db37c1d027f1869>. Acesso em: 28 de dezembro de 2020.

BURNS, Jane L. Burkholderia cepacia complex and other Burkholderia species. In: **Principles and Practice of Pediatric Infectious Diseases**. Content Repository Only!, 2012.

CAILHOL, Didier et al. Fungal and bacterial outbreak in the wine vinification area in the saint-Marcel show cave. **Science of The Total Environment**, p. 138756, 2020.

CAIRNS, G. et al. Susceptibility of Burkholderia cepacia and other pathogens of importance in cystic fibrosis to uv light. Letters in applied microbiology, v. 32, n. 3, p. 135-138, 2001.

CALVILLO-MEDINA, Rosa P. et al. Bacterial diversity based on a 16S rRNA gene amplicon data set from a high-altitude crater lake and glacial samples of the Iztaccihuatl volcanic complex (Mexico). **Microbiology resource announcements**, v. 8, n. 12, 2019.

CAMPOS, J. F.; CASTILHO, A. F. Uma visão geográfica da região da Flona de Carajás. Fauna da Floresta Nacional de Carajás: estudos sobre vertebrados terretres. São Paulo: Nitro Imagens, p. 16-27, 2012.

CANIE. Cadastro Nacional de Informações Espeleológicas (2021). Disponível em: http://www.icmbio.gov.br/cecav/canie.html. Acesso em: 02 fev 2021.

CAPORASO, J. Gregory et al. QIIME allows analysis of high-throughput community sequencing data. **Nature methods**, v. 7, n. 5, p. 335, 2010.

CARVALHO, Pedro Sérgio Landim de et al. Minério de ferro. BNDS – Biblioteca Digital. Ministério do Desenvolvimento, Industrio e Comércio Exterior. 2014.

CEREZINI, Paula et al. Soybean tolerance to drought depends on the associated Bradyrhizobium strain. **Brazilian Journal of Microbiology**, v. 51, n. 4, p. 1977-1986, 2020.

CHAKRAVORTY, Soumitesh et al. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. **Journal of microbiological methods**, v. 69, n. 2, p. 330-339, 2007.

CHAO, Anne. Nonparametric estimation of the number of classes in a population. **Scandinavian Journal of statistics**, p. 265-270, 1984.

CHEN, Mei-Hong et al. Dyella humi sp. nov., isolated from forest soil. **International journal of systematic and evolutionary microbiology**, v. 66, n. 11, p. 4372-4376, 2016.

COMI, G.; CANTONI, C. PSYCHROTROPHIC BACTERIA Arthrobacter spp. In Encyclopedia of Dairy Sciences, **Elsevier**, pp. 372–378. 2011

CONDIE, Kent C. Earth as an evolving planetary system. **Academic Press**, p37-278, 2015.

COOMBES, Martin A. et al. The influence of light attenuation on the biogeomorphology of a marine karst cave: a case study of Puerto Princesa Underground River, Palawan, the Philippines. **Geomorphology**, v. 229, p. 125-133, 2015.

CSARDI, Gabor et al. The igraph software package for complex network research. **InterJournal, complex systems**, v. 1695, n. 5, p. 1-9, 2006.

DAI, J.; LIU, X.; WANG, Y. Genetic diversity and phylogeny of rhizobia isolated from Caragana microphylla growing in desert soil in Ningxia, China. **Genet Mol Res**, v. 11, n. 3, p. 2683-2693, 2012.

DAI, Y. et al. The composition, localization and function of low-temperature-adapted microbial communities involved in methanogenic degradations of cellulose and chitin from Qinghai–Tibetan Plateau wetland soils. **Journal of applied microbiology**, v. 121, n. 1, p. 163-176, 2016.

DANG, Hongyue; CHEN, Chen-Tung A. Ecological energetic perspectives on responses of nitrogen-transforming chemolithoautotrophic microbiota to changes in the marine environment. **Frontiers in microbiology**, v. 8, p. 1246, 2017.

D'ANGELI, Ilenia M. et al. Geochemistry and microbial diversity of cave waters in the gypsum karst aquifers of Emilia Romagna region, Italy. Science of the Total **Environment**, v. 598, p. 538-552, 2017.

D'ANGELI, Ilenia M. et al. Light attenuation as a control for microbiogeomorphic features: Implications for coastal cave speleogenesis. **Geomorphology**, v. 354, p. 107054, 2020.

DAVIS, Madison C. et al. Surface runoff alters cave microbial community structure and function. **PIoS one**, v. 15, n. 5, p. e0232742, 2020

DE ARAUJO, Ademir Sergio Ferreira et al. Bacterial community associated with rhizosphere of maize and cowpea in a subsequent cultivation. **Applied soil ecology**, v. 143, p. 26-34, 2019.

DE CASTRO, Alinne et al. Microbial diversity in Cerrado biome (neotropical savanna) soils. **PLoS One**, v. 11, n. 2, p. e0148785, 2016.

DE CASTRO, Virgilio Hipólito Lemos et al. Acidobacteria from oligotrophic soil from the Cerrado can grow in a wide range of carbon source concentrations. **Canadian Journal of Microbiology**, v. 59, n. 11, p. 746-753, 2013.

DE LEON, Marian et al. Bacterial diversity of bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines: A first report on the metagenome of Philippine bat guano. **PLoS One**, v. 13, n. 7, p. e0200095, 2018.

DE MANDAL, Surajit et al. First report of bacterial community from a bat guano using Illumina next-generation sequencing. **Genomics Data**, v. 4, p. 99-101, 2015.

DE MANDAL, Surajit; CHATTERJEE, Raghunath; KUMAR, Nachimuthu Senthil. Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle. **BMC microbiology,** v. 17, n. 1, p. 1-9, 2017.

DE MANDAL, Surajit; SANGA, Zothan; NACHIMUTHU, Senthil Kumar. Metagenomic analysis of bacterial community composition among the cave sediments of Indo-Burman biodiversity hotspot region. PeerJ PrePrints, 2014.

DE MOURA, Priscilla Andrade et al. The relevance of actinobacteria as sources of antioxidant compounds: Evaluation of Streptomyces isolates from rhizosphere collected at Brazilian Caatinga. In: **Microbial and Natural Macromolecules**. Academic Press. p. 401-418. 2021.

DOĞRUÖZ-GÜNGÖR, Nihal. The microbial community structure of the Dupnisa cave in Kırklareli, Turkey. **Acta Carsologica**, v. 49, n. 2-3, 2020.

DOKULIL, Martin T. Gross and net production in different environments. In: **Encyclopedia of Ecology**, p334–345, 2019.

DONG, Yiyi et al. Co-occurrence pattern and function prediction of bacterial community in Karst cave. **BMC microbiology**, v. 20, p. 1-13, 2020.

DURRER, Ademir et al. The drivers underlying biogeographical patterns of bacterial communities in soils under sugarcane cultivation. **Applied Soil Ecology**, v. 110, p. 12-20, 2017.

ENAGBONMA, Ben Jesuorsemwen; AJILOGBA, Caroline Fadeke; BABALOLA, Olubukola Oluranti. Metagenomic profiling of bacterial diversity and community structure in termite mounds and surrounding soils. **Archives of Microbiology**, v. 202, n. 10, p. 2697-2709, 2020.

ENGEL, Annette Summers. Chemolithoautotrophy. In: **Encyclopedia of Caves**. Academic Press, p. 267-276, 2019.

ENGEL, Annette Summers. Microbes. In: Encyclopedia of Caves. **Academic Press**, p. 691-698, 2019.

FIGUEIRA, Ricardo Lima et al. Exotic sulphate and phosphate speleothems in caves from eastern Amazonia (Carajás, Brazil): Crystallographic and chemical insights. **Journal of South American Earth Sciences**, v. 90, p. 412-422, 2019.

FIŠER, Žiga. Adaptation to low food. In: **Encyclopedia of caves**. Academic Press, 2019. p. 1-7.

FRANKE-WHITTLE, Ingrid H. et al. Rhizosphere bacteria and fungi associated with plant growth in soils of three replanted apple orchards. **Plant and Soil**, v. 395, n. 1, p. 317-333, 2015.

GIANNINI, Tereza Cristina et al. Parcelas E Transectos Delimitados E Escolha Dos Alvos Da Biodiversidade Que Serão Inventariados. 2020.

GILLIESON, David. **Caves: processes, development and management**. John Wiley & Sons, 2009.

GLAESER, Stefanie P. et al. Streptomyces dysideae sp. nov., isolated from a marine Mediterranean sponge Dysidea tupha. **International journal of systematic and evolutionary microbiology**, p. 004672, 2021.

GOTO, Keiichi et al. Proposal of six species of moderately thermophilic, acidophilic, endospore-forming bacteria: Alicyclobacillus contaminans sp. nov., Alicyclobacillus fastidiosus sp. nov., Alicyclobacillus kakegawensis sp. nov., Alicyclobacillus macrosporangiidus sp. nov., Alicyclobacillus sacchari sp. nov. and Alicyclobacillus shizuokensis sp. nov. International journal of systematic and evolutionary microbiology, v. 57, n. 6, p. 1276-1285, 2007.

GTARI, Maher et al. Phylogenetic perspectives of nitrogen-fixing actinobacteria. **Archives of microbiology**, v. 194, n. 1, p. 3-11, 2012.

GUIMARAES, Helena Ipe Pinheiro et al. Seasonal Variations in Soil Microbiota Profile of Termite (Syntermes wheeleri) Mounds in the Brazilian Tropical Savanna. **Microorganisms**, v. 8, n. 10, p. 1482, 2020.

GUO, Leilei et al. Oligotrophic bacterium Hymenobacter latericoloratus CGMCC 16346 degrades the neonicotinoid imidacloprid in surface water. **AMB Express**, v. 10, n. 1, p. 1-13, 2020.

GUO, Xu et al. Alicyclobacillus aeris sp. nov., a novel ferrous-and sulfur-oxidizing bacterium isolated from a copper mine. **International journal of systematic and evolutionary microbiology**, v. 59, n. 10, p. 2415-2420, 2009.

HAMEDI, Javad; KAFSHNOUCHI, Maghsoud; RANJBARAN, Mohsen. A Study on actinobacterial diversity of Hampoeil cave and screening of their biological activities. **Saudi journal of biological sciences**, v. 26, n. 7, p. 1587-1595, 2019.

HAN, Ziming et al. Assessing the impact of source water on tap water bacterial communities in 46 drinking water supply systems in China. **Water Research**, v. 172, p. 115469, 2020.

HARÐARDÓTTIR, Hulda María et al. Chitin synthesis and degradation in Lepeophtheirus salmonis: Molecular characterization and gene expression profile during synthesis of a new exoskeleton. **Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology**, v. 227, p. 123-133, 2019. HASHMI, IIsha; BINDSCHEDLER, Saskia; JUNIER, Pilar. Firmicutes in: AMARESAN, N. et al. (Ed.). Beneficial Microbes in Agro-Ecology: Bacteria and Fungi. **Academic Press**,p 363-396 2020.

HATANO, Fernanda M., Rolim, Samir G., Dornas, Tiago T., Dornas, Rubem. Consolidação do Conhecimento da Fauna de Vertebrados na Flona de Carajás. In: MARTINS et al. (Orgs.) Fauna da Floresta Nacional de Carajás: estudos sobre vertebrados terrestres. São Paulo Cap. 1, p. 26-27. 2012

HEBERLE, Henry et al. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. **BMC bioinformatics**, v. 16, n. 1, p. 1-7, 2015.

HERSHEY, Olivia S.; BARTON, Hazel A. The Microbial Diversity of Caves. In: **Cave Ecology**. Springer, Cham, p. 69-90, 2018.

HOFFMANN, Emerson Luis et al. Variabilidade das chuvas no Sudeste da Amazôniparaense, Brasil (Rainfall variability in southeastern Amazonia, Paraense, Brazil). **Revista Brasileira de Geografia Física**, v. 11, n. 4, p. 1251-1263, 2018.

HOREMANS, Benjamin et al. Genetic (in) stability of 2, 6-dichlorobenzamide catabolism in Aminobacter sp. strain MSH1 biofilms under carbon starvation conditions. **Applied and environmental microbiology**, v. 83, n. 11, 2017.

HU, Jiamiao et al. Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. **Food Research International**, v. 111, p. 265-271, 2018.

HUANG, Xiao-Chen et al. Alicyclobacillus in the fruit juice industry: spoilage, detection, and prevention/control. **Food Reviews International**, v. 31, n. 2, p. 91-124, 2015.

HURTADO, Jasmin et al. Actinobacteria isolated from mineral ores in Peru. Journal of Microbiology, **Biotechnology and Food Sciences**, v. 2020, p. 366-370, 2020.

ICMBIO. Instituto Chico Mendes de Conservação da Biodiversidade. STCP Engenharia de Projetos Ltda. Plano de Manejo da Floresta Nacional de Carajás. Brasília: **Ministério do Meio Ambiente**, 2016.

ITOH, Takafumi; KIMOTO, Hisashi. Bacterial chitinase system as a model of chitin biodegradation. **Targeting chitin-containing organisms**, p. 131-151, 2019.

JAFFÉ, Rodolfo et al. Conserving relics from ancient underground worlds: assessing the influence of cave and landscape features on obligate iron cave dwellers from the Eastern Amazon. **PeerJ**, v. 6, p. e4531, 2018.

JAFFE, Rodolfo et al. Reconciling mining with the conservation of cave biodiversity: a quantitative baseline to help establish conservation priorities. **PLoS One**, v. 11, n. 12, p. e0168348, 2016.

JAMES, Julia M.; CONTOS, Annalisa K.; BARNES, Craig M. Nullarbor caves, Australia. In: **Encyclopedia of caves**. **Academic Press**, p. 761-768. 2019.

JANSEN, Debora Campos; PEREIRA, Karolina Do Nascimento. Distribuição e caracterização das cavernas brasileiras segundo a base de dados do CECAV. **Revista Brasileira de Espeleologia**, v. 2, n. 4, p. 47-70, 2015.

JI, Mukan et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. **Nature**, v. 552, n. 7685, p. 400-403, 2017.

JURADO, Valme et al. Microbial communities in vermiculation deposits from an Alpine cave. **Frontiers in Earth Science**, v. 8, p. 635, 2020.

JURADO, Valme et al. Pathogenic and opportunistic microorganisms in caves. **International Journal of Speleology**, v. 39, n. 1, p. 2, 2010.

KARLIDAG, Huseyin et al. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. **Scientia Horticulturae**, v. 114, n. 1, p. 16-20, 2007.

KARMAKAR, Joydip et al. Growth promoting properties of Mycobacterium and Bacillus on rice plants under induced drought. **Plant Science Today**, v. 8, n. 1, p. 49-57, 2021.]

KAVAMURA, Vanessa Nessner et al. Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the Brazilian Caatinga biome. **PIoS one**, v. 8, n. 9, p. e73606, 2013.

KERSTERS, K. et al. In The Prokaryotes. An electronic handbook on the biology of bacteria: ecophysiology, isolation, identification, and applications (eds A. Balows et al.), p. 3-37, 2006.

KIM, Mincheol et al. Local-scale variation of soil bacterial communities in ice-free regions of maritime Antarctica. **Soil Biology and Biochemistry**, v. 133, p. 165-173, 2019.

KLINDWORTH, Anna et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. **Nucleic acids research**, v. 41, n. 1, p. e1-e1, 2013.

KROPPENSTEDT, Reiner Michael; GOODFELLOW, Michael Microtetraspora. A família Thermomonosporaceae: Actinocorallia, actinomadura, spirillospora e thermomonospora. **A Handbook on the Biology of Bacteria**, v. 3, p. 682-724, 2006.

KURAMAE, Eiko E.; DE ASSIS COSTA, Ohana Y. Acidobacteria. **Encyclopedia of Microbiology (Fourth Edition)**, p. 1-8, 2019.

LANDE, Leah et al. Mycobacterium avium in community and household water, suburban Philadelphia, Pennsylvania, USA, 2010–2012. **Emerging infectious diseases**, v. 25, n. 3, p. 473, 2019.

LEMES, Camila Gracyelle de Carvalho. Diversidade metagenômica e potencial biotecnológico de cavernas de canga do Quadrilátero Ferrífero. 2018.

LEMOS, Judith Liliana Solórzano et al. Fungos filamentosos: agentes de degradação de petróleo e hidrocarbonetos aromáticos policíclicos (HAPs). 2008.

LEVETT, Alan et al. Evidence of biogeochemical processes in iron duricrust formation. **Journal of South American Earth Sciences**, v. 71, p. 131-142, 2016.

LI, Jiabao et al. Distinct mechanisms shape soil bacterial and fungal co-occurrence networks in a mountain ecosystem. **FEMS microbiology ecology**, v. 96, n. 4, p. fiaa030, 2020.

LI, Jibin et al. System performance and microbial community succession in a partial nitrification biofilm reactor in response to salinity stress. **Bioresource technology**, v. 270, p. 512-518, 2018.

LI, Jing et al. Copper pollution decreases the resistance of soil microbial community to subsequent dry–rewetting disturbance. **Journal of Environmental Sciences**, v. 39, p. 155-164, 2016.

LI, Qiang et al. Deterioration-associated microbiome of stone monuments: structure, variation, and assembly. **Applied and environmental microbiology**, v. 84, n. 7, 2018.

LUPWAYI, Newton Z. et al. Profiles of wheat rhizobacterial communities in response to repeated glyphosate applications, crop rotation, and tillage. **Canadian Journal of Soil Science**, p. 1-11, 2020.

LYNGGAARD, Christina et al. DNA-based arthropod diversity assessment in Amazonian iron mine lands show ecological succession towards undisturbed reference sites. **Frontiers in Ecology and Evolution**, v. 8, 2020.

MACAMBIRA, J.B. O ambiente deposicional da Formação Carajás e uma proposta de modelo evolutivo para a Bacia Grão Pará. Tese (Doutorado em Ciências, área de Metalogênese) – Instituto de Geociências, Universidade Estadual de Campinas, Campinas, 242 f., 2003.

MACIEL, L. M. et al., Relevância Espeleológica Volume III. Classificação de Relevância: Projeto Serra Sul – Corpo B. Canaã dos Carajás – PA. Dezembro, 2019.

MADSEN, Eugene L. Microorganisms and their roles in fundamental biogeochemical cycles. **Current opinion in biotechnology**, v. 22, n. 3, p. 456-464, 2011.

MAMMOLA, Stefano; ISAIA, Marco. Cave communities and species interactions. In: **Cave Ecology**. **Springer**, Cham, p. 255-267. 2018.

MANDAL, Surajit; SANGA, Zothan; NACHIMUTHU, Senthil Kumar. **Metagenomic** analysis of bacterial community composition among the cave sediments of Indo-Burman biodiversity hotspot region. PeerJ PrePrints, 2014.

MARTINS, F. D. et al. Fauna da Floresta Nacional de Carajás: estudos sobre vertebrados terrestres. São Paulo, Nitro Imagens, 2012.

MAURITY, Clóvis Wagner; KOTSCHOUBEY, Basile. Evolução recente da cobertura de alteração no Platô N1-Serra dos Carajás-PA. Degradação, pseudocarstificação, espeleotemas. **Boletim do Museu Paraense Emilio Goeldi. Série Ciências da Terra**, v. 7, p. 331-362, 1995

MCMURDIE, Paul J.; HOLMES, Susan. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. **PloS one**, v. 8, n. 4, p. e61217, 2013.

MÉHEUST, Raphaël et al. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. **The ISME Journal**, v. 14, n. 12, p. 2907-2922, 2020.

MEISINGER, Daniela B. et al. In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA). **Environmental microbiology**, v. 9, n. 6, p. 1523-1534, 2007.

MENG, Han et al. Microbial diversity and composition of the Preah Vihear temple in Cambodia by high-throughput sequencing based on genomic DNA and RNA. International Biodeterioration & Biodegradation, v. 149, p. 104936, 2020.

MISRA, Pawan Kumar; GAUTAM, Neelam Kumari; ELANGOVAN, Vadamalai. Bat guano: a rich source of macro and microelements essential for plant growth. **Annals of Plant and Soil Research**, v. 21, n. 1, p. 82-86, 2019.

MMA. Instrução Normativa N. 2. Ministério do Meio Ambiente. Disponível em: <u>http://www.icmbio.gov.br/cecav/images/download/IN%2002_MMA_criterios_210809.</u> <u>pdf</u>., 2009. Acesso em: 07 abril 2019.

MODRA, Helena et al. Detection of mycobacteria in the environment of the Moravian Karst (Bull Rock Cave and the relevant water catchment area): the impact of water sediment, earthworm castings and bat guano. **Veterinární medicína**, v. 62, n. 3, p. 153-168, 2017

MOREIRA, FM De S.; SIQUEIRA, J. O. Microbiologia e bioquímica do solo. **Ufla, Lavras**, 2006.

MORYA, Raj; SALVACHÚA, Davinia; THAKUR, Indu Shekhar. Burkholderia: An Untapped but Promising Bacterial Genus for the Conversion of Aromatic Compounds. **Trends in Biotechnology**, 2020.

MURRELL, Paul; GRAPHICS, R. Chapman & Hall. CRC, Boca Raton, FL, 2005.

NEWSOME, Laura et al. Natural attenuation of lead by microbial manganese oxides in a karst aquifer. **Science of The Total Environment**, v. 754, p. 142312, 2021.

NG, Jenny CY; CHIU, Jill MY. Changes in biofilm bacterial communities in response to combined effects of hypoxia, ocean acidification and nutrients from aquaculture activity in Three Fathoms Cove. **Marine Pollution Bulletin**, v. 156, p. 111256, 2020.

NGOM, Issa Isaac et al. Taxono-genomics and description of *Gordonibacter massiliensis* sp. nov., a new bacterium isolated from stool of healthy patient. **New microbes and new infections**, v. 33, p. 100624, 2020.

NIYOMVONG, Nanthavut et al. Actinomycetes from tropical limestone caves. **Chiang Mai J. Sci**, v. 39, n. 3, p. 373-388, 2012

NOGALES, Balbina et al. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. **Applied and Environmental Microbiology**, v. 67, n. 4, p. 1874-1884, 2001.

NORTHUP, KATHLEEN H. LAVOIE, Diana. Geomicrobiology of caves: a review. **Geomicrobiology journal**, v. 18, n. 3, p. 199-222, 2001.

NUNES, Gisele Lopes et al. Quillworts from the Amazon: A multidisciplinary populational study on *Isoetes serracarajensis* and *Isoetes cangae*. **PLoS One**, v. 13, n. 8, p. e0201417, 2018.

OLIVEIRA SILVA, Aline et al. Plant growth-promoting rhizobacterial communities from an area under the influence of iron mining and from the adjacent phytophysiognomies which have high genetic diversity. **Land Degradation & Development**, v. 31, n. 16, p. 2237-2254, 2020.

OLIVEIRA, Cássia et al. 16S rRNA gene-based metagenomic analysis of Ozark cave bacteria. **Diversity**, v. 9, n. 3, p. 31, 2017.

OLIVEIRA, Renato Renison Moreira et al. Complete mitochondrial genomes of three troglophile cave spiders (Mesabolivar, pholcidae). **Mitochondrial DNA Part B**, v. 4, n. 1, p. 251-252, 2019.

OLIVEIRA, Renato RM et al. PIMBA: a PIpeline for MetaBarcoding Analysis. **bioRxiv**, 2021.

ONG, Catherine EL et al. Presence of Burkholderia pseudomallei in soil and paddy rice water in a rice field in Northeast Thailand, but not in air and rainwater. **The American journal of tropical medicine and hygiene**, v. 97, n. 6, p. 1702-1705, 2017.

OROZCO-MOSQUEDA, Ma del Carmen et al. Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (strategy I plant) in vitro via dimethylhexadecylamine emission. **Plant and Soil**, v. 362, n. 1, p. 51-66, 2013.

PARKER, Ceth W. et al. Fe (III) reducing microorganisms from iron ore caves demonstrate fermentative Fe (III) reduction and promote cave formation. **Geomicrobiology Journal**, v. 35, n. 4, p. 311-322, 2018.

PARKER, Ceth W. et al. Microbial iron cycling and biospeleogenesis: cave development in the Carajás Formation, Brazil. **ICS Proceedings. Prague**, p. 442-446, 2013.

PATHAK, Ashish; JASWAL, Rajneesh; CHAUHAN, Ashvini. Genomic Characterization of a Mercury Resistant Arthrobacter sp. H-02-3 Reveals the Presence of Heavy Metal and Antibiotic Resistance Determinants. **Frontiers in microbiology**, v. 10, p. 3039, 2020.

PAULA, Caio César Pires de et al. Dinâmica e diversidade das comunidades microbianas em cavernas tropicais do Brasil Central. 2018.

PEIFFER, Jason A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. **Proceedings of the National Academy of Sciences**, v. 110, n. 16, p. 6548-6553, 2013.

PILÓ, Luis B.; AULER, Augusto S.; MARTINS, Frederico. Carajás National Forest: Iron ore plateaus and caves in southeastern Amazon. In: **Landscapes and landforms of Brazil**. Springer, Dordrecht, 2015.

PILÓ, Luís Beethoven; AULER, Augusto. Introdução à espeleologia. Curso de Espeleologia e Licenciamento Ambiental. Belo Horizonte: Instituto Terra Brasilis, p. 7-23, 2011.

PONTES, Paulo RM et al. The role of protected and deforested areas in the hydrological processes of Itacaiúnas River Basin, eastern Amazonia. **Journal of environmental management**, v. 235, p. 489-499, 2019.

RAM, Shristi et al. Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. **Journal of Functional Foods**, v. 67, p. 103867, 2020.

RIBEIRO, André Afonso. et al. **Plano de Pesquisa Geossistemas Ferruginosos da Floresta Nacional de Carajás**. Brasília. p. 83. 2017.

RODRIGUES, Gisele Regina et al. Unraveling the xylanolytic potential of Acidobacteria bacterium AB60 from Cerrado soils. **FEMS Microbiology Letters**, v. 367, n. 18, p. fnaa149, 2020.

ROY, P; KUMAR, A. Chapter 1 – Arthrobacter. In AMARESAN, N. et al. (Ed.). **Beneficial Microbes in Agro-Ecology: Bacteria and Fungi**. Academic Press, Pages 3-11 2020.

RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA, 2020.

RUPPERT, Krista M.; KLINE, Richard J.; RAHMAN, Md Saydur. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. **Global Ecology and Conservation**, p. e00547, 2019.

RYAN, Robert P. et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. **Nature Reviews Microbiology**, v. 7, n. 7, p. 514-525, 2009.

SAHOO, Prafulla Kumar et al. Geochemistry of upland lacustrine sediments from Serra dos Carajás, Southeastern Amazon, Brazil: implications for catchment weathering, provenance, and sedimentary processes. **Journal of South American Earth Sciences**, v. 72, p. 178-190, 2016.

SAIZ-JIMENEZ, Cesareo. Microbiological and environmental issues in show caves. **World Journal of microbiology and biotechnology**, v. 28, n. 7, p. 2453-2464, 2012.

SAKOUI, Souraya et al. The Life Hidden Inside Caves: Ecological and Economic Importance of Bat Guano. International Journal of Ecology, v. 2020, 2020.

SALWAN, Richa; SHARMA, Vivek. Molecular and biotechnological aspects of secondary metabolites in actinobacteria. **Microbiological research**, v. 231, p. 126374, 2020.

SCHAEFER, Carlos EGR et al. The physical environment of rupestrian grasslands (Campos Rupestres) in Brazil: geological, geomorphological and pedological characteristics, and interplays. In: **Ecology and Conservation of mountaintop** grasslands in Brazil. Springer, 2016.

SCHETTINI, Antonella T. et al. Exploring Al, Mn and Fe phytoextraction in 27 ferruginous rocky outcrops plant species. **Flora**, v. 238, p. 175-182, 2018.

SCHMIEDER, R.; EDWARDS, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics, v. 27, n. 6, p. 863-4, Mar 15 2011.

SCHOLZ, Matthew B.; LO, Chien-Chi; CHAIN, Patrick SG. Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. **Current opinion in biotechnology**, v. 23, n. 1, p. 9-15, 2012.

SCHRADER, C. et al. PCR inhibitors–occurrence, properties and removal. **Journal** of applied microbiology, v. 113, n. 5, p. 1014-1026, 2012.

SELVIN, Joseph et al. Culture-dependent and metagenomic analysis of lesser horseshoe bats' gut microbiome revealing unique bacterial diversity and signatures of potential human pathogens. **Microbial pathogenesis**, v. 137, p. 103675, 2020.

SHEREMET, Andriy et al. Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil. **Environmental microbiology**, v. 22, n. 8, p. 3143-3157, 2020.

SHIN, Na-Ri; WHON, Tae Woong; BAE, Jin-Woo. Proteobacteria: microbial signature of dysbiosis in gut microbiota. **Trends in biotechnology**, v. 33, n. 9, p. 496-503, 2015.

SILVA, Aline Cristina Sousa da; COSTA, Marcondes Lima da. Genesis of the "soft" iron ore at S11D Deposit, in Carajás, Amazon Region, Brazil. **Brazilian Journal of Geology**, v. 50, n. 1, 2020.

SSEKAGIRI, A. T.; SLOAN, W.; ZEESHAN IJAZ, U. microbiomeSeq: an R package for analysis of microbial communities in an environmental context. In: **ISCB Africa ASBCB Conference, Kumasi, Ghana. https://github. com/umerijaz/microbiomeSeq**. 2017.

SUN, Anqi et al. Microbial communities in crop phyllosphere and root endosphere are more resistant than soil microbiota to fertilization. **Soil Biology and Biochemistry**, v. 153, p. 108113, 2021.

SUN, Jingjing et al. Hymenobacter profundi sp. nov., isolated from deep-sea water. **International journal of systematic and evolutionary microbiology,** v. 68, n. 3, p. 947-950, 2018.

SUN, Weimin et al. Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage. **Applied microbiology and biotechnology**, v. 100, n. 19, p. 8523-8535, 2016.

SUN, Yan et al. Bacterial diversity in the gastrointestinal tracts of *Rhinolophus luctus* and *Murina leucogaster* in Henan Province, China. **Annals of Microbiology**, v. 69, n. 13, p. 1407-1414, 2019.

TALÀ, Adelfia et al. Chemotrophic profiling of prokaryotic communities thriving on organic and mineral nutrients in a submerged coastal cave. **Science of The Total Environment**, v. 755, p. 142514, 2021.

TAO, Jinjin et al. Horizontal gene transfer of a unique nif island drives convergent evolution of free-living N2-fixing Bradyrhizobium. **bioRxiv**, 2021.

THIEL, Vera et al. Chloroflexi. 2019. in: SCHMIDT, Thomas M. (Ed.). Encyclopedia of Microbiology. **Academic Press**, 2019.

TIAN, Bing; HUA, Yuejin. Carotenoid biosynthesis in extremophilic Deinococcus– Thermus bacteria. **Trends in microbiology**, v. 18, n. 11, p. 512-520, 2010.

TIÓ-COMA, Maria et al. Detection of Mycobacterium leprae DNA in soil: multiple needles in the haystack. **Scientific reports**, v. 9, n. 1, p. 1-7, 2019.

TOMCZYK-ŻAK, Karolina; ZIELENKIEWICZ, Urszula. Microbial diversity in caves. *Geomicrobiology Journal*, v. 33, n. 1, p. 20-38, 2016.

TORRES-CORTÉS, G. et al. Bacterial community in the rhizosphere of the cactus species *Mammillaria carnea* during dry and rainy seasons assessed by deep sequencing. **Plant and soil**, v. 357, n. 1, p. 275-288, 2012.

TORTOLI, Enrico. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. **Clinical microbiology reviews**, v. 16, n. 2, p. 319-354, 2003.

TRINH, Stefanie et al. Gut microbiota and brain alterations in a translational anorexia nervosa rat model. **Journal of Psychiatric Research**, v. 133, p. 156-165, 2021.

TURRINI, Paolo et al. The microbial community of a biofilm lining the wall of a pristine cave in Western New Guinea. **Microbiological Research**, v. 241, p. 126584, 2020.

VALE, S. A. Projeto ferro Carajás S11D: um novo impulso ao desenvolvimento sustentável do Brasil. **Rio de Janeiro**, 2013.

VAN BERGEIJK, Doris A. et al. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. **Nature Reviews Microbiology**, p. 1-13, 2020.

VAN KENHOVE, Elisa et al. Overview and comparison of Legionella regulations worldwide. **American journal of infection control**, v. 47, n. 8, p. 968-978, 2019.

VANINSBERGHE, David et al. Non-symbiotic Bradyrhizobium ecotipos dominate North American forest soils. **The ISME journal**, v. 9, n. 11, p. 2435-2441, 2015.

VARDEH, David P.; WOODHOUSE, Jason N.; NEILAN, Brett A. Microbial Diversity of Speleothems in Two Southeast Australian Limestone Cave Arches. **Journal of Cave & Karst Studies**, v. 80, n. 3, 2018.

VARLAMOV, V. P. et al. Chitin/chitosan and its derivatives: Fundamental problems and practical approaches. **Biochemistry (Moscow)**, v. 85, n. 1, p. 154-176, 2020.

VASCONCELOS, Santelmo et al. Complete mitochondrial genome of a cave dwelling Desmopachria (Insecta: Coleoptera: Dytiscidae) from the Eastern Amazon. **Mitochondrial DNA Part B**, v. 6, n. 2, p. 415-417, 2021.

VIANA, Pedro Lage et al. Flora das cangas da Serra dos Carajás, Pará, Brasil: história, área de estudos e metodologia. **Rodriguésia**, v. 67, n. 5SPE, p. 1107-1124, 2016.

VIEIRA, Caroline Krug et al. Microbiome of a revegetated iron-mining site and pristine ecosystems from the Brazilian Cerrado. **Applied Soil Ecology**, v. 131, p. 55-65, 2018.

VILLEGAS-PLAZAS, Marcela; SANABRIA, Janeth; JUNCA, Howard. A composite taxonomical and functional framework of microbiomes under acid mine drainage bioremediation systems. **Journal of environmental management**, v. 251, p. 109581, 2020.

VIPINDAS, P. V. et al. Diversity of sediment bacterial communities in the South Eastern Arabian Sea. **Regional Studies in Marine Science**, v. 35, p. 101153, 2020.

WANG, Qiong et al. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. **MBio**, v. 4, n. 5, 2013.

WARD, Naomi L. et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. **Applied and environmental microbiology**, v. 75, n. 7, p. 2046-2056, 2009.

WEON, Hang-Yeon et al. *Dyella soli* sp. nov. and *Dyella terrae* sp. nov., isolated from soil. **International journal of systematic and evolutionary microbiology,** v. 59, n. 7, p. 1685-1690, 2009.

WHITMAN, William B.; GOODFELLOW, Michael; KÄMPFER, Peter. **Bergey's** manual of systematic bacteriology: Volume 5: The Actinobacteria. Springer New York, 2012.

WHITMAN, William B.; SUZUKI, Ken-ichiro. Solirubrobacterales. Bergey's Manual of Systematics of Archaea and Bacteria, p. 1-3, 2015.

WICKHAM H. ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York, USA, pp. 260. 2016.

WICKHAM, Hadley et al. dplyr: A grammar of data manipulation. **R package version**, 2015.

WICKHAM, Hadley et al. Reshaping data with the reshape package. **Journal of** statistical software, v. 21, n. 12, p. 1-20, 2007.

WIDDEL, F.; MUSAT, F. Diversity and common principles in enzymatic activation of hydrocarbons. In: **Handbook of hydrocarbon and lipid microbiology**. 2010.

WISESCHART, Apirak; POOTANAKIT, Kusol. Metagenomic-based approach to a comprehensive understanding of cave microbial diversity. In: **Recent Advancements in Microbial Diversity**. Academic Press, 2020

WU, Yucheng et al. Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China. **Frontiers in microbiology**, v. 6, p. 244, 2015.

XIA, Zhengang et al. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process. **Science of the Total Environment**, v. 697, p. 134047, 2019.

XU, Chengxinag; YAN, Hanlin; ZHANG, Siqiang. Heavy metal enrichment and health risk assessment of karst cave fish in Libo, Guizhou, China. **Alexandria Engineering Journal**, v. 60, n. 1, p. 1885-1896, 2021.

XU, Zhuofei et al. Bioinformatic approaches reveal metagenomic characterization of soil microbial community. **PIoS one**, v. 9, n. 4, p. e93445, 2014

YADAV, Ajar Nath et al. Actinobacteria from rhizosphere: molecular diversity, distributions, and potential biotechnological applications. In: **New and future developments in microbial biotechnology and bioengineering**. Elsevier, 2018.

YADAV, Kaushlesh K. et al. Actinobacteria interventions in plant and environment fitness. In: **Microbiomes and Plant Health**. Academic Press. p. 397-427. 2021.

YAN, Changchun et al. Deciphering the toxic effects of metals in gold mining area: Microbial community tolerance mechanism and change of antibiotic resistance genes. **Environmental Research**, v. 189, p. 109869, 2020.

YANG, Bo; WANG, Yong; QIAN, Pei-Yuan. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. **BMC bioinformatics**, v. 17, n. 1, p. 135, 2016.

YANG, Changming et al. Linkage between water soluble organic matter and bacterial community in sediment from a shallow, eutrophic lake, Lake Chaohu, China. **Journal of Environmental Sciences**, v. 98, p. 39-46, 2020.

YANG, Yerang et al. Soil bacterial community structures across biomes in artificial ecosystems. **Ecological Engineering**, v. 158, p. 106067, 2020.

YASIR, Muhammad. Analysis of bacterial communities and characterization of antimicrobial strains from cave microbiota. **brazilian journal of microbiology**, v. 49, n. 2, p. 248-257, 2018

YOON, Jung-Hoon et al. *Jeongeupia naejangsanensis* gen. nov., sp. nov., a cellulose-degrading bacterium isolated from forest soil from Naejang Mountain in Korea. **International journal of systematic and evolutionary microbiology,** v. 60, n. 3, p. 615-619, 2010.

ZAPPI, Daniela C. et al. Plotting a future for Amazonian canga vegetation in a campo rupestre context. **PLoS One**, v. 14, n. 8, p. e0219753, 2019.

ZHAI, Yafei et al. Effects of ultraviolet-C light-emitting diodes at 275 nm on inactivation of *Alicyclobacillus acidoterrestris* vegetative cells and its spores as well as the quality attributes of orange juice. **Food Science and Technology International**, p. 1082013220957529, 2020.

ZHANG, Jiajie et al. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. **Bioinformatics**, v. 30, n. 5, p. 614-620, 2014.

ZHANG, Jing et al. Adaptation to salinity: Response of biogas production and microbial communities in anaerobic digestion of kitchen waste to salinity stress. **Journal of Bioscience and Bioengineering**, 2020.

ZHANG, Kai et al. Abnormal composition of gut microbiota is associated with resilience versus susceptibility to inescapable electric stress. **Translational psychiatry**, v. 9, n. 1, p. 1-9, 2019.

ZHANG, Limin et al. Iron reduction by diverse actinobacteria under oxic and pHneutral conditions and the formation of secondary minerals. **Chemical Geology**, v. 525, p. 390-399, 2019. ZHANG, Zhenshui et al. Clarification of the relationship between the members of the family Thermomonosporaceae on the basis of 16S rDNA, 16S-23S rRNA internal transcribed spacer and 23S rDNA sequences and chemotaxonomic analyses. **International journal of systematic and evolutionary microbiology**, v. 51, n. 2, p. 373-383, 2001.

ZHAO, Li et al. Response of bacterial regrowth, abundant and rare bacteria and potential pathogens to secondary chlorination in secondary water supply system. **Science of The Total Environment**, v. 719, p. 137499, 2020.

ZHAO, Rui et al. Ammonia-oxidizing Archaea dominate ammonia-oxidizing communities within alkaline cave sediments. **Geomicrobiology Journal**, v. 34, n. 6, p. 511-523, 2017.

ZHAO, Shuai et al. Biogeographical distribution of bacterial communities in saline agricultural soil. **Geoderma**, v. 361, p. 114095, 2020.

ZHAO, Yangyang et al. Characterization of *Lysobacter* spp. strains and their potential use as biocontrol agents against pear anthracnose. **Microbiological Research**, v. 242, p. 126624, 2021

ANEXOS

ANEXO A - Planta interna e externa das cavidades estudadas.

Figura 18 – Planta da Cavidade 01 (S11B-0036), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer.

Figura 19 - Planta da Cavidade 02 (S11B-0055), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer.

Figura 20 - Planta da Cavidade 03 (S11B-0073), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer.

Figura 21 - Planta da Cavidade 04 (S11B-0080), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer.

Figura 22 - Planta da Cavidade 05 (S11B-0177), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer.

Figura 23 - Planta da Cavidade 06 (S11B-0178), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer.

Figura 24 - Planta da Cavidade 07 (S11B-0187), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer.

Figura 25 - Planta da Cavidade 08 (S11B-0212), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer.

Figura 26 - Planta da Cavidade 09 (S11B-0220), situada no corpo geológico S11B, Serra Sul da Floresta Nacional de Carajás. Fonte: Empesa Carste Ciência e Meio Ambiente. Cartografia: Bruno Scherer.

APÊNDICES

APÊNDICE A – Metadados

 Tabela 9 - Metadados relacionados a amostras de solo, coletadas em cavidades do corpo geológico S11B, localizado na Serre Sul da Floresta Nacional de Carjás, amostras analisada pela técnica de DNA metabarcoding baseada no gene 16S rRNA.

SampleNam	Caverna	Identificaçã	Seto	Pont	Zona	Estaçã	Altitud	РН	Desníve	Area	Volum	Litotip	Municipi	Relevânci
e	S	0	r	0	Lona	0	е	•••		71100	е	0	0	а
ITV23533	CAVE_0 1	S11B_0036	I	А	Fótica	Seco	792	83.5	6.98	587.94	658	Ferrifer o	Canaã	Máxima
ITV23534	CAVE_0 1	S11B_0036	I	В	Fótica	Seco	792	83.5	6.98	587.94	658	Ferrifer o	Canaã	Máxima
ITV23538	CAVE_0 1	S11B_0036	Ш	В	Afótica	Seco	792	83.5	6.98	587.94	658	Ferrifer o	Canaã	Máxima
ITV23499	CAVE_0 2	S11B_0055	I	А	Fótica	Seco	670	175.2 5	22.97	853.55	1432	Ferrifer o	Canaã	Máxima
ITV23500	CAVE_0 2	S11B_0055	I	В	Fótica	Seco	670	175.2 5	22.97	853.55	1432	Ferrifer o	Canaã	Máxima
ITV23501	CAVE_0 2	S11B_0055	Ш	А	Penumbr a	Seco	670	175.2 5	22.97	853.55	1432	Ferrifer o	Canaã	Máxima
ITV23502	CAVE_0 2	S11B_0055	Ш	В	Penumbr a	Seco	670	175.2 5	22.97	853.55	1432	Ferrifer o	Canaã	Máxima
ITV23503	CAVE_0 2	S11B_0055	IV	А	Afótica	Seco	670	175.2 5	22.97	853.55	1432	Ferrifer o	Canaã	Máxima
ITV23504	CAVE_0 2	S11B_0055	IV	В	Afótica	Seco	670	175.2 5	22.97	853.55	1432	Ferrifer o	Canaã	Máxima
ITV23553	CAVE_0 3	S11B_0073	П	А	Penumbr a	Seco	737	367.0 2	34.47	2218.3 6	4241	Ferrifer o	Canaã	Máxima
ITV23554	CAVE_0 3	S11B_0073	П	В	Penumbr a	Seco	737	367.0 2	34.47	2218.3 6	4241	Ferrifer o	Canaã	Máxima
ITV23555	CAVE_0 3	S11B_0073	VII	А	Afótica	Seco	737	367.0 2	34.47	2218.3 6	4241	Ferrifer o	Canaã	Máxima
ITV23556	CAVE_0 3	S11B_0073	VII	В	Afótica	Seco	737	367.0 2	34.47	2218.3 6	4241	Ferrifer o	Canaã	Máxima
ITV23559	CAVE_0 4	S11B_0080	I	А	Fótica	Seco	858	64.48	1.26	142.88	113	Ferrifer o	Canaã	Máxima
ITV23560	CAVE_0 4	S11B_0080	I	В	Fótica	Seco	858	64.48	1.26	142.88	113	Ferrifer o	Canaã	Máxima
ITV23561	CAVE_0 4	S11B_0080	П	А	Penumbr a	Seco	858	64.48	1.26	142.88	113	Ferrifer o	Canaã	Máxima

SampleNam	Caverna	Identificaçã	Seto	Pont	Zona	Estaçã	Altitud	РН	Desníve	Area	Volum	Litotip	Municipi	Relevânci
	CAVE 0	0	<u> </u>	0	Penumbr	0	<u>e</u>				e	Ferrifer	0	d
ITV23562	4	S11B_0080	II	В	a	Seco	858	64.48	1.26	142.88	113	0	Canaã	Máxima
ITV23563	CAVE_0 4	S11B_0080	Ш	А	Afótica	Seco	858	64.48	1.26	142.88	113	Ferrifer o	Canaã	Máxima
ITV23564	CAVE_0 4	S11B_0080	Ш	В	Afótica	Seco	858	64.48	1.26	142.88	113	Ferrifer o	Canaã	Máxima
ITV23489	CAVE_0 5	S11B_0177	I	А	Fótica	Seco	641	44.59	7.71	161.33	182	Ferrifer o	Canaã	Máxima
ITV23490	CAVE_0 5	S11B_0177	I	В	Fótica	Seco	641	44.59	7.71	161.33	182	Ferrifer o	Canaã	Máxima
ITV23491	CAVE_0 5	S11B_0177	П	А	Penumbr a	Seco	641	44.59	7.71	161.33	182	Ferrifer o	Canaã	Máxima
ITV23492	CAVE_0 5	S11B_0177	П	В	Penumbr a	Seco	641	44.59	7.71	161.33	182	Ferrifer o	Canaã	Máxima
ITV23493	CAVE_0 5	S11B_0177	Ш	А	Afótica	Seco	641	44.59	7.71	161.33	182	Ferrifer o	Canaã	Máxima
ITV23494	CAVE_0 5	S11B_0177	Ш	В	Afótica	Seco	641	44.59	7.71	161.33	182	Ferrifer o	Canaã	Máxima
ITV23517	CAVE_0 6	S11B_0178	V	А	Fótica	Seco	828	253.7 8	11.91	631.37	604	Ferrifer o	Canaã	Máxima
ITV23518	CAVE_0 6	S11B_0178	V	В	Fótica	Seco	828	253.7 8	11.91	631.37	604	Ferrifer o	Canaã	Máxima
ITV23519	CAVE_0 6	S11B_0178	VI	А	Penumbr a	Seco	828	253.7 8	11.91	631.37	604	Ferrifer o	Canaã	Máxima
ITV23520	CAVE_0 6	S11B_0178	VI	В	Penumbr a	Seco	828	253.7 8	11.91	631.37	604	Ferrifer o	Canaã	Máxima
ITV23521	CAVE_0 6	S11B_0178	VII	А	Afótica	Seco	828	253.7 8	11.91	631.37	604	Ferrifer o	Canaã	Máxima
ITV23522	CAVE_0 6	S11B_0178	VII	В	Afótica	Seco	828	253.7 8	11.91	631.37	604	Ferrifer o	Canaã	Máxima
ITV23523	CAVE_0 7	S11B_0187	I	А	Fótica	Seco	676	177.9 5	23.82	674.29	726	Ferrifer o	Canaã	Máxima
ITV23524	CAVE_0 7	S11B_0187	I	В	Fótica	Seco	676	177.9 5	23.82	674.29	726	Ferrifer o	Canaã	Máxima
ITV23525	CAVE_0 7	S11B_0187	П	А	Penumbr a	Seco	676	177.9 5	23.82	674.29	726	Ferrifer o	Canaã	Máxima
ITV23526	CAVE_0 7	S11B_0187	П	В	Penumbr a	Seco	676	177.9 5	23.82	674.29	726	Ferrifer o	Canaã	Máxima
ITV23527	CAVE_0 7	S11B_0187	VII	А	Afótica	Seco	676	177.9 5	23.82	674.29	726	Ferrifer	Canaã	Máxima

SampleNam	Caverna	Identificaçã	Seto	Pont	Zona	Estaçã	Altitud	PH	Desníve	Area	Volum	Litotip	Municipi	Relevânci
е	S	0	r	0		0	е	477.0			е	<u> </u>	0	а
ITV23528	CAVE_0 7	S11B_0187	VII	В	Afótica	Seco	676	177.9 5	23.82	674.29	726	Ferriter o	Canaã	Máxima
ITV23483	CAVE_0 8	S11B_0212	I	А	Fótica	Seco	678	57.83	4.95	225.56	380	Ferrifer o	Canaã	Máxima
ITV23484	CAVE_0 8	S11B_0212	Ι	В	Fótica	Seco	678	57.83	4.95	225.56	380	Ferrifer o	Canaã	Máxima
ITV23485	CAVE_0 8	S11B_0212	П	А	Penumbr a	Seco	678	57.83	4.95	225.56	380	Ferrifer o	Canaã	Máxima
ITV23486	CAVE_0 8	S11B_0212	П	В	Penumbr a	Seco	678	57.83	4.95	225.56	380	Ferrifer o	Canaã	Máxima
ITV23487	CAVE_0 8	S11B_0212	III	А	Afótica	Seco	678	57.83	4.95	225.56	380	Ferrifer o	Canaã	Máxima
ITV23488	CAVE_0 8	S11B_0212	Ш	В	Afótica	Seco	678	57.83	4.95	225.56	380	Ferrifer o	Canaã	Máxima
ITV23541	CAVE_0 9	S11B_0220	I	А	Fótica	Seco	589	133.4 5	3.91	552.2	764	Ferrifer o	Canaã	Máxima
ITV23542	CAVE_0 9	S11B_0220	Ι	В	Fótica	Seco	589	133.4 5	3.91	552.2	764	Ferrifer o	Canaã	Máxima
ITV23543	CAVE_0 9	S11B_0220	П	А	Penumbr a	Seco	589	133.4 5	3.91	552.2	764	Ferrifer o	Canaã	Máxima
ITV23544	CAVE_0 9	S11B_0220	П	В	Penumbr a	Seco	589	133.4 5	3.91	552.2	764	Ferrifer o	Canaã	Máxima
ITV23545	CAVE_0 9	S11B_0220	IV	А	Afótica	Seco	589	133.4 5	3.91	552.2	764	Ferrifer o	Canaã	Máxima
ITV23546	CAVE_0 9	S11B_0220	IV	В	Afótica	Seco	589	133.4 5	3.91	552.2	764	Ferrifer o	Canaã	Máxima
ITV23463	CAVE_0 1	S11B_0036	I	А	Fótica	Chuvos o	792	83.5	6.98	587.94	658	Ferrifer o	Canaã	Máxima
ITV23464	CAVE_0 1	S11B_0036	I	В	Fótica	Chuvos o	792	83.5	6.98	587.94	658	Ferrifer o	Canaã	Máxima
ITV23465	CAVE_0 1	S11B_0036	П	А	Penumbr a	Chuvos o	792	83.5	6.98	587.94	658	Ferrifer o	Canaã	Máxima
ITV22303	CAVE_0 1	S11B_0036	Ш	А	Afótica	Chuvos o	792	83.5	6.98	587.94	658	Ferrifer o	Canaã	Máxima
ITV22304	CAVE_0 1	S11B_0036	Ш	В	Afótica	Chuvos o	792	83.5	6.98	587.94	658	Ferrifer o	Canaã	Máxima
ITV23441	CAVE_0 2	S11B_0055	I	А	Fótica	Chuvos o	670	175.2 5	22.97	853.55	1432	Ferrifer o	Canaã	Máxima
ITV23442	CAVE_0 2	S11B_0055	Ι	В	Fótica	Chuvos o	670	175.2 5	22.97	853.55	1432	Ferrifer o	Canaã	Máxima

SampleNam	Caverna	Identificaçã	Seto	Pont	Zona	Estaçã	Altitud	РН	Desníve	Area	Volum	Litotip	Municipi	Relevânci
ITV23443	CAVE_0 2	S11B_0055		A	Penumbr a	Chuvos o	670	175.2 5	22.97	853.55	1432	Ferrifer o	Canaã	Máxima
ITV23444	CAVE_0 2	S11B_0055	Ш	В	Penumbr	Chuvos o	670	175.2 5	22.97	853.55	1432	Ferrifer o	Canaã	Máxima
ITV22281	CAVE_0 2	S11B_0055	IV	А	Afótica	Chuvos o	670	175.2 5	22.97	853.55	1432	Ferrifer o	Canaã	Máxima
ITV22282	CAVE_0 2	S11B_0055	IV	В	Afótica	Chuvos o	670	175.2 5	22.97	853.55	1432	Ferrifer o	Canaã	Máxima
ITV23473	CAVE_0 3	S11B_0073	I	А	Fótica	Chuvos o	737	367.0 2	34.47	2218.3 6	4241	Ferrifer o	Canaã	Máxima
ITV23475	CAVE_0 3	S11B_0073	П	А	Penumbr a	Chuvos o	737	367.0 2	34.47	2218.3 6	4241	Ferrifer o	Canaã	Máxima
ITV23476	CAVE_0 3	S11B_0073	II	В	Penumbr a	Chuvos o	737	367.0 2	34.47	2218.3 6	4241	Ferrifer o	Canaã	Máxima
ITV22296	CAVE_0 3	S11B_0073	VII	А	Afótica	Chuvos o	737	367.0 2	34.47	2218.3 6	4241	Ferrifer o	Canaã	Máxima
ITV22295	CAVE_0 3	S11B_0073	VII	В	Afótica	Chuvos o	737	367.0 2	34.47	2218.3 6	4241	Ferrifer o	Canaã	Máxima
ITV23477	CAVE_0 4	S11B_0080	Ι	А	Fótica	Chuvos o	858	64.48	1.26	142.88	113	Ferrifer o	Canaã	Máxima
ITV23478	CAVE_0 4	S11B_0080	Ι	В	Fótica	Chuvos o	858	64.48	1.26	142.88	113	Ferrifer 0	Canaã	Máxima
ITV23479	CAVE_0 4	S11B_0080	П	А	Penumbr	Chuvos 0	858	64.48	1.26	142.88	113	Ferrifer 0	Canaã	Máxima
ITV23480	CAVE_0 4	S11B_0080	П	В	Penumbr a	Chuvos o	858	64.48	1.26	142.88	113	Ferrifer 0	Canaã	Máxima
ITV22293	CAVE_0	S11B_0080	Ш	А	Afótica	Chuvos o	858	64.48	1.26	142.88	113	Ferrifer	Canaã	Máxima
ITV22294	CAVE_0	S11B_0080	III	В	Afótica	Chuvos 0	858	64.48	1.26	142.88	113	Ferrifer 0	Canaã	Máxima
ITV23435	CAVE_0 5	S11B_0177	I	А	Fótica	Chuvos 0	641	44.59	7.71	161.33	182	Ferrifer 0	Canaã	Máxima
ITV23436	CAVE_0 5	S11B_0177	I	В	Fótica	Chuvos o	641	44.59	7.71	161.33	182	Ferrifer	Canaã	Máxima
ITV23437	CAVE_0 5	S11B_0177	П	А	Penumbr a	Chuvos o	641	44.59	7.71	161.33	182	Ferrifer	Canaã	Máxima
ITV23438	CAVE_0 5	S11B_0177	П	В	Penumbr a	Chuvos o	641	44.59	7.71	161.33	182	Ferrifer	Canaã	Máxima
ITV22277	CAVE_0 5	S11B_0177	III	А	Afótica	Chuvos o	641	44.59	7.71	161.33	182	Ferrifer o	Canaã	Máxima

SampleNam	Caverna	Identificaçã	Seto	Pont	Zona	Estaçã	Altitud	PH	Desníve	Area	Volum	Litotip	Municipi	Relevânci
е	S CAVE O	0	r	0		0	е		I		е	0	0	а
ITV22278	CAVE_0 5	S11B_0177	III	В	Afótica	Chuvos O	641	44.59	7.71	161.33	182	O	Canaã	Máxima
ITV23452	CAVE_0 6	S11B_0178	V	В	Fótica	Chuvos o	828	253.7 8	11.91	631.37	604	Ferrifer o	Canaã	Máxima
ITV23453	CAVE_0 6	S11B_0178	VI	А	Penumbr a	Chuvos o	828	253.7 8	11.91	631.37	604	Ferrifer o	Canaã	Máxima
ITV23454	CAVE_0 6	S11B_0178	VI	В	Penumbr a	Chuvos o	828	253.7 8	11.91	631.37	604	Ferrifer o	Canaã	Máxima
ITV22287	CAVE_0 6	S11B_0178	VII	А	Afótica	Chuvos o	828	253.7 8	11.91	631.37	604	Ferrifer o	Canaã	Máxima
ITV23455	CAVE_0 7	S11B_0187	I	А	Fótica	Chuvos o	676	177.9 5	23.82	674.29	726	Ferrifer o	Canaã	Máxima
ITV23456	CAVE_0 7	S11B_0187	I	В	Fótica	Chuvos o	676	177.9 5	23.82	674.29	726	Ferrifer o	Canaã	Máxima
ITV23457	CAVE_0 7	S11B_0187	П	А	Penumbr a	Chuvos o	676	177.9 5	23.82	674.29	726	Ferrifer o	Canaã	Máxima
ITV23458	CAVE_0 7	S11B_0187	П	В	Penumbr a	Chuvos o	676	177.9 5	23.82	674.29	726	Ferrifer o	Canaã	Máxima
ITV22285	CAVE_0 7	S11B_0187	VII	А	Afótica	Chuvos o	676	177.9 5	23.82	674.29	726	Ferrifer o	Canaã	Máxima
ITV22286	CAVE_0 7	S11B_0187	VII	В	Afótica	Chuvos o	676	177.9 5	23.82	674.29	726	Ferrifer o	Canaã	Máxima
ITV23431	CAVE_0 8	S11B_0212	I	А	Fótica	Chuvos o	678	57.83	4.95	225.56	380	Ferrifer o	Canaã	Máxima
ITV23432	CAVE_0 8	S11B_0212	I	В	Fótica	Chuvos o	678	57.83	4.95	225.56	380	Ferrifer o	Canaã	Máxima
ITV23433	CAVE_0 8	S11B_0212	П	А	Penumbr a	Chuvos o	678	57.83	4.95	225.56	380	Ferrifer o	Canaã	Máxima
ITV23434	CAVE_0 8	S11B_0212	П	В	Penumbr a	Chuvos o	678	57.83	4.95	225.56	380	Ferrifer o	Canaã	Máxima
ITV22275	CAVE_0 8	S11B_0212	Ш	А	Afótica	Chuvos o	678	57.83	4.95	225.56	380	Ferrifer o	Canaã	Máxima
ITV22276	CAVE_0 8	S11B_0212	Ш	В	Afótica	Chuvos o	678	57.83	4.95	225.56	380	Ferrifer o	Canaã	Máxima
ITV23467	CAVE_0 9	S11B_0220	I	А	Fótica	Chuvos o	589	133.4 5	3.91	552.2	764	Ferrifer o	Canaã	Máxima
ITV23468	CAVE_0 9	S11B_0220	I	В	Fótica	Chuvos o	589	133.4 5	3.91	552.2	764	Ferrifer o	Canaã	Máxima
ITV23469	CAVE_0 9	S11B_0220	П	А	Penumbr a	Chuvos o	589	133.4 5	3.91	552.2	764	Ferrifer o	Canaã	Máxima

SampleNam	Caverna	Identificaçã	Seto	Pont	Zona	Estaçã	Altitud	ЪЦ	Desníve	Aroa	Volum	Litotip	Municipi	Relevânci
е	S	ο	r	ο	2011a	ο	е	гп	I	Alea	е	ο	ο	а
IT\/22/70	CAVE_0	S11B 0220	п	B	Penumbr	Chuvos	590	133.4	2 01	552.2	764	Ferrifer	Canaã	Máxima
11 7 2 3 4 / 0	9	3116_0220	11	D	а	0	509	5	3.91	55Z.Z	704	0	Callaa	Maxima
IT\/22202	CAVE_0	S11B 0220	N/	۸	Afótica	Chuvos	590	133.4	2 01	552.2	764	Ferrifer	Canaã	Máxima
11 VZZZĘZ	9	3110_0220	IV	A	Alolica	0	209	5	3.91	55Z.Z	704	0	Callaa	Ινιαλίπτα
171/22204	CAVE_0	C11D 0000	N7	Р	Afático	Chuvos	500	133.4	2.01	FF 2 2	764	Ferrifer	Canañ	Mávima
11 VZZZ91	9 5	STID_0220	IV	В	Alotica	0	589	5	3.91	55Z.Z	764 0	0	Callaa	waxima

APÊNDICE B – Número de Sequencias e Bases

 Tabela 10 - Número total de sequências e geradas pós sequenciamento (brutas) e pós tratamento de qualidade para microbioma cavernícola

Amostra	Dados	Brutos	Dados Pós-	Tratamento
	Total de Reads	Total de Bases	Total de Reads	Total de Bases
ITV22275_R1_001.fastq	317243	95381335	307183	69155446
ITV22275_R2_001.fastq	317243	95178731	307183	58491789
ITV22276_R1_001.fastq	313026	94192165	304081	71521447
ITV22276_R2_001.fastq	313026	93914205	304081	61117288
ITV22277_R1_001.fastq	382329	115039169	373029	86910074
ITV22277_R2_001.fastq	382329	114698791	373029	73846000
ITV22278_R1_001.fastq	361544	108791322	352969	80802915
ITV22278_R2_001.fastq	361544	108464911	352969	72038062
ITV22281_R1_001.fastq	1558	468659	1147	181315
ITV22281_R2_001.fastq	1558	467430	1147	180843
ITV22282_R1_001.fastq	360708	108418352	350069	77364105
ITV22282_R2_001.fastq	360708	108219107	350069	67888327
ITV22285_R1_001.fastq	372752	112161289	361928	86116246
ITV22285_R2_001.fastq	372752	111828359	361928	70383134
ITV22286_R1_001.fastq	275829	82914187	267582	60699989
ITV22286_R2_001.fastq	275829	82754679	267582	52186160
ITV22287_R1_001.fastq	181917	54737973	176191	40664167
ITV22287_R2_001.fastq	181917	54576040	176191	35436002
ITV22291_R1_001.fastq	270827	81450327	261069	57301566
ITV22291_R2_001.fastq	270827	81244704	261069	49281615
ITV22292_R1_001.fastq	510086	153456812	495098	117520933
ITV22292_R2_001.fastq	510086	153037961	495098	97325430
ITV22293_R1_001.fastq	321649	96780577	311728	74021691
ITV22293_R2_001.fastq	321649	96502506	311728	61604843
ITV22294_R1_001.fastq	296572	89239554	289954	67476104
ITV22294_R2_001.fastq	296572	88975404	289954	61047455
ITV22295_R1_001.fastq	306893	92314686	297685	70103968
ITV22295_R2_001.fastq	306893	92077327	297685	60662832
ITV22296_R1_001.fastq	318864	95865041	310482	70773348
ITV22296_R2_001.fastq	318864	95653332	310482	62633296
ITV22303_R1_001.fastq	451252	135727993	439259	99280437
ITV22303_R2_001.fastq	451252	135379015	439259	90050357
ITV22304_R1_001.fastq	318295	95678508	309695	70283698
ITV22304_R2_001.fastq	318295	95494309	309695	60540877
ITV23431_R1_001.fastq	525159	158004272	512587	115275512
ITV23431_R2_001.fastq	525159	157551249	512587	100440573
ITV23432_R1_001.fastq	230634	69379945	224959	49893285
ITV23432_R2_001.fastq	230634	69189128	224959	44178285
ITV23433_R1_001.fastq	257048	77347675	249852	55302703
ITV23433_R2_001.fastq	257048	77116536	249852	47815182

Amostra	Dados	Brutos	Dados Pós-	Tratamento
	Total de Reads	Total de Bases	Total de Reads	Total de Bases
ITV23434_R1_001.fastq	354868	106723858	345939	77917210
ITV23434_R2_001.fastq	354868	106469772	345939	67336693
ITV23435_R1_001.fastq	353830	106453588	344130	79804170
ITV23435_R2_001.fastq	353830	106157481	344130	67121453
ITV23436_R1_001.fastq	374436	112667288	365677	83863708
ITV23436_R2_001.fastq	374436	112337786	365677	72768199
ITV23437_R1_001.fastq	315492	94932456	305172	71496003
ITV23437_R2_001.fastq	315492	94653176	305172	59065742
ITV23438_R1_001.fastq	290987	87569340	280993	64639853
ITV23438_R2_001.fastq	290987	87302251	280993	54737434
ITV23441_R1_001.fastq	296230	89109350	286872	67621143
ITV23441_R2_001.fastq	296230	88877346	286872	55506879
ITV23442_R1_001.fastq	227438	68410848	220791	50063066
ITV23442_R2_001.fastq	227438	68238361	220791	43729236
ITV23443_R1_001.fastq	232938	70097061	226264	53909494
ITV23443_R2_001.fastq	232938	69888447	226264	45318513
ITV23444_R1_001.fastq	379402	114169928	369254	86331480
ITV23444_R2_001.fastq	379402	113823407	369254	74182866
ITV23452_R1_001.fastq	375770	113060470	364917	86752563
ITV23452_R2_001.fastq	375770	112744962	364917	69522270
ITV23453_R1_001.fastq	917761	276105101	889774	197647729
ITV23453_R2_001.fastq	917761	275340432	889774	170338710
ITV23454_R1_001.fastq	192559	57936626	187419	42737229
ITV23454_R2_001.fastq	192559	57770114	187419	37269273
ITV23455_R1_001.fastq	446294	134302724	431927	102336770
ITV23455_R2_001.fastq	446294	133904300	431927	85525984
ITV23456_R1_001.fastq	321863	96854766	309690	72073425
ITV23456_R2_001.fastq	321863	96571328	309690	59246567
ITV23457_R1_001.fastq	329725	99222049	319170	71828000
ITV23457_R2_001.fastq	329725	98924382	319170	62987607
ITV23458_R1_001.fastq	170938	51438654	165969	37596688
ITV23458_R2_001.fastq	170938	51286181	165969	33631872
ITV23463_R1_001.fastq	241244	72598758	233673	51073097
ITV23463_R2_001.fastq	241244	72376957	233673	44737879
ITV23464_R1_001.fastq	480667	144625873	468842	107170078
ITV23464_R2_001.fastq	480667	144208626	468842	92294696
ITV23467_R1_001.fastq	299161	90014676	290779	65473305
ITV23467_R2_001.fastq	299161	89756964	290779	57622356
ITV23468_R1_001.fastq	356004	107123374	345581	81080362
ITV23468_R2_001.fastq	356004	106830530	345581	68251020
ITV23469_R1_001.fastq	335288	100878742	324918	79204511
ITV23469_R2_001.fastq	335288	100597759	324918	63635669
ITV23470_R1_001.fastq	297896	89544071	284091	63704482
ITV23470_R2_001.fastq	297896	89374441	284091	51056888

Amostra	Dados	Brutos	Dados Pós-	Tratamento	
	Total de Reads	Total de Bases	Total de Reads	Total de Bases	
ITV23473_R1_001.fastq	111914	33656277	108603	25049111	
ITV23473_R2_001.fastq	111914	33572098	108603	22137717	
ITV23475_R1_001.fastq	293402	88277123	285418	65621885	
ITV23475_R2_001.fastq	293402	88026784	285418	56676731	
ITV23476_R1_001.fastq	380260	114383032	370772	87710359	
ITV23476_R2_001.fastq	380260	114086956	370772	74039633	
ITV23477_R1_001.fastq	3427	1031272	2967	503116	
ITV23477_R2_001.fastq	3427	1028202	2967	502094	
ITV23478_R1_001.fastq	747066	224800850	727980	173446987	
ITV23478_R2_001.fastq	747066	224129363	727980	148005665	
ITV23479_R1_001.fastq	196865	59220733	190110	42820696	
ITV23479_R2_001.fastq	196865	59062009	190110	35932182	
ITV23480_R1_001.fastq	265121	79780981	256907	58923713	
ITV23480_R2_001.fastq	265121	79540010	256907	50500193	
ITV23483_R1_001.fastq	342900	103179068	295946	71370121	
ITV23483_R2_001.fastq	342900	102827726	295946	58252834	
ITV23484_R1_001.fastq	389977	117332897	339256	82715909	
ITV23484_R2_001.fastq	389977	116956830	339256	64512510	
ITV23485_R1_001.fastq	359186	108070086	307456	72177647	
ITV23485_R2_001.fastq	359186	107710225	307456	56246833	
ITV23486_R1_001.fastq	310680	93370953	265841	63319241	
ITV23486_R2_001.fastq	310680	93172325	265841	51353239	
ITV23487_R1_001.fastq	387083	116413981	331121	79236315	
ITV23487_R2_001.fastq	387083	116084191	331121	63980980	
ITV23488_R1_001.fastq	364091	109488179	314125	76304153	
ITV23488_R2_001.fastq	364091	109184746	314125	62436185	
ITV23489_R1_001.fastq	363356	109318948	312896	77533002	
ITV23489_R2_001.fastq	363356	108963973	312896	62717194	
ITV23490_R1_001.fastq	384670	115747940	334406	83753477	
ITV23490_R2_001.fastq	384670	115363341	334406	66109338	
ITV23491_R1_001.fastq	309163	93023202	264543	64714125	
ITV23491_R2_001.fastq	309163	92712734	264543	52351872	
ITV23492_R1_001.fastq	334147	100544544	286956	71746880	
ITV23492_R2_001.fastq	334147	100197386	286956	57010129	
ITV23493_R1_001.fastq	331168	99649765	285823	70446167	
ITV23493_R2_001.fastq	331168	99317728	285823	56475343	
ITV23494_R1_001.fastq	379160	114093339	325258	80090227	
ITV23494_R2_001.fastq	379160	113697708	325258	62775233	
ITV23499_R1_001.fastq	336137	101123288	287654	70690955	
ITV23499_R2_001.fastq	336137	100807236	287654	58209588	
ITV23500_R1_001.fastq	276038	82992464	238529	57742082	
ITV23500_R2_001.fastq	276038	82785346	238529	47544802	
ITV23501_R1_001.fastq	321499	96730368	278037	68992404	
ITV23501_R2_001.fastq	321499	96412189	278037	54292413	
Amostra	Dados Brutos		Dados Pós-Tratamento		
-----------------------	----------------	----------------	----------------------	----------------	--
	Total de Reads	Total de Bases	Total de Reads	Total de Bases	
ITV23502_R1_001.fastq	339016	101982984	291051	71327914	
ITV23502_R2_001.fastq	339016	101667973	291051	56860364	
ITV23503_R1_001.fastq	328396	98768103	278142	66839241	
ITV23503_R2_001.fastq	328396	98483727	278142	55877897	
ITV23504_R1_001.fastq	264003	79346929	222781	53072105	
ITV23504_R2_001.fastq	264003	79175358	222781	43065498	
ITV23517_R1_001.fastq	382139	114973619	330063	80667785	
ITV23517_R2_001.fastq	382139	114610210	330063	63049113	
ITV23518_R1_001.fastq	1988	597959	1412	207208	
ITV23518_R2_001.fastq	1988	596209	1412	214275	
ITV23519_R1_001.fastq	332777	100117306	284890	69641351	
ITV23519_R2_001.fastq	332777	99804256	284890	56883617	
ITV23520_R1_001.fastq	408703	122968773	355381	87415144	
ITV23520_R2_001.fastq	408703	122563420	355381	69916565	
ITV23521_R1_001.fastq	364310	109595082	313581	76762653	
ITV23521_R2_001.fastq	364310	109250108	313581	61352554	
ITV23522_R1_001.fastq	323900	97452753	277997	67929447	
ITV23522_R2_001.fastq	323900	97131512	277997	54992955	
ITV23523_R1_001.fastq	365838	110065345	314283	78855619	
ITV23523_R2_001.fastq	365838	109702090	314283	61303925	
ITV23524_R1_001.fastq	506695	152438406	427244	102978200	
ITV23524_R2_001.fastq	506695	151954526	427244	82160976	
ITV23525_R1_001.fastq	401830	120901912	344570	85956937	
ITV23525_R2_001.fastq	401830	120496796	344570	67771572	
ITV23526_R1_001.fastq	348366	104815724	301509	75340665	
ITV23526_R2_001.fastq	348366	104465534	301509	58515252	
ITV23527_R1_001.fastq	313602	94316409	262960	61878818	
ITV23527_R2_001.fastq	313602	94038863	262960	49013660	
ITV23528_R1_001.fastq	370475	111397681	321548	78373026	
ITV23528_R2_001.fastq	370475	111087967	321548	64004647	
ITV23533_R1_001.fastq	413335	124370865	356764	87142134	
ITV23533_R2_001.fastq	413335	123947405	356764	69531840	
ITV23534_R1_001.fastq	322004	96898336	277933	68468800	
ITV23534_R2_001.fastq	322004	96566404	277933	53026818	
ITV23538_R1_001.fastq	341089	102465892	288765	69262569	
ITV23538_R2_001.fastq	341089	102292286	288765	54589863	
ITV23541_R1_001.fastq	367630	110596421	314949	76926689	
ITV23541_R2_001.fastq	367630	110244807	314949	63199610	
ITV23542_R1_001.fastq	438703	131943574	382774	93965002	
ITV23542_R2_001.fastq	438703	131551937	382774	74901625	
ITV23543_R1_001.fastq	417219	125484575	358955	89502163	
ITV23543_R2_001.fastq	417219	125118570	358955	69458536	
ITV23544_R1_001.fastq	385105	115762569	327983	79603849	
ITV23544_R2_001.fastq	385105	115479642	327983	65798472	

Amostra	Dados	Brutos	Dados Pós-Tratamento		
	Total de Reads	Total de Bases	Total de Reads	Total de Bases	
ITV23545_R1_001.fastq	378170	113714300	326145	80469865	
ITV23545_R2_001.fastq	378170	113395025	326145	63782988	
ITV23546_R1_001.fastq	241093	72464048	206843	49811776	
ITV23546_R2_001.fastq	241093	72299229	206843	40976860	
ITV23553_R1_001.fastq	465906	140133763	403560	101200137	
ITV23553_R2_001.fastq	465906	139721841	403560	77884268	
ITV23554_R1_001.fastq	339881	102235704	291991	71222461	
ITV23554_R2_001.fastq	339881	101926772	291991	56116502	
ITV23555_R1_001.fastq	356323	107104997	304970	73572147	
ITV23555_R2_001.fastq	356323	106864725	304970	61876577	
ITV23556_R1_001.fastq	342946	103083446	297740	72980341	
ITV23556_R2_001.fastq	342946	102850008	297740	59408780	
ITV23559_R1_001.fastq	403618	121448330	345933	85178961	
ITV23559_R2_001.fastq	403618	121038208 345933	68911699		
ITV23560_R1_001.fastq	331770	99826495 282828	68118512		
ITV23560_R2_001.fastq	331770	99504074	282828	55444933	
ITV23561_R1_001.fastq	332068	99894643	283137	69244661	
ITV23561_R2_001.fastq	332068	99598101	283137	54705560	
ITV23562_R1_001.fastq	196364	59050310	169460	41328022	
ITV23562_R2_001.fastq	196364	58882194	169460	32213666	
ITV23563_R1_001.fastq	363408	109297418	306888	73149120	
ITV23563_R2_001.fastq	363408	108983271	306888	59160298	
ITV23564_R1_001.fastq	401529	120722388	345953	84450819	
ITV23564_R2_001.fastq	401529	120409308	345953	67284240	
ITV23645_R1_001.fastq	289743	87158405	281613	64135183	
ITV23645_R2_001.fastq	289743	86928694	281613	56549005	
Total	66664456	20024843079	60903178	13191765085	

APÊNDICE C – Índices de alfa diversidade

Amostra	Observed	Chao1	Shannon
ITV22303	1070	136.175.675.675.676	440.869.760.499.643
ITV22304	485	576.122.448.979.592	363.908.060.885.915
ITV23463	444	661.630.434.782.609	281.096.668.370.182
ITV23464	914	119.897.590.361.446	481.112.866.200.255
ITV23533	1892	223.742.162.162.162	561.375.071.116.065
ITV23534	1877	2.233.265	508.918.277.800.341
ITV23538	717	806.266.666.666.667	329.928.889.929.324
ITV23465	1355	159.589.285.714.286	477.069.348.061.274
ITV22281	86	246	423.943.332.186.988
ITV22282	1115	124.852.459.016.393	327.030.339.825.464
ITV23441	1596	177.487.931.034.483	508.558.806.974.525
ITV23442	1343	158.939.204.545.455	510.656.276.866.295
ITV23443	1537	188.574.324.324.324	39.014.214.243.022
ITV23444	1966	235.675.572.519.084	370.527.487.575.261
ITV23499	2151	251.784.647.302.905	534.461.064.147.761
ITV23500	844	107.500.854.700.855	39.723.061.221.992
ITV23501	2159	253.239.195.979.899	570.525.846.846.688
ITV23502	2454	28.159.465.648.855	588.295.641.005.373
ITV23503	1341	152.486.394.557.823	481.011.441.912.272
ITV23504	717	802.153.846.153.846	332.316.569.405.164
ITV22295	1231	1552	404.563.048.822.829
ITV22296	876	117.867.857.142.857	38.939.227.846.372
ITV23473	923	101.793.548.387.097	427.270.715.552.748
ITV23475	1587	18.952.538.071.066	453.560.327.287.411
ITV23476	1884	219.598.404.255.319	548.239.879.963.855
ITV23553	2202	254.032.608.695.652	51.574.563.406.489
ITV23554	1948	2313	556.178.283.767.016
ITV23555	845	980.835.443.037.975	383.981.073.053.373
ITV23556	791	884.139.534.883.721	360.768.486.140.388
ITV22293	1678	193.385.279.187.817	497.480.386.672.833
ITV22294	1212	135.535.151.515.152	33.405.471.083.538
ITV23477	174	408.807.692.307.692	453.026.702.934.103
ITV23478	2227	275.017.857.142.857	346.489.534.722.409

 Tabela 11 - Valor dos índices de alfa diversidade por amostra.

Amostra	Observed	Chao1	Shannon
ITV23479	858	113.796.774.193.548	409.235.990.535.054
ITV23480	1421	184.855.494.505.495	386.115.806.623.159
ITV23559	2194	249.927.727.272.727	563.189.418.097.773
ITV23560	2462	283.758.181.818.182	5.674.579.471.025
ITV23561	2205	2.492.525	560.191.828.022.631
ITV23562	888	102.639.285.714.286	468.389.416.361.069
ITV23563	1702	194.329.677.419.355	526.619.605.247.639
ITV23564	1178	128.673.913.043.478	454.180.981.247.357
ITV22277	1663	216.919.075.144.509	477.483.606.689.907
ITV22278	1532	196.569.127.516.779	488.023.980.828.518
ITV23435	2153	251.940.585.774.059	516.018.690.491.721
ITV23436	1928	238.270.930.232.558	548.643.441.434.168
ITV23437	2089	250.782.773.109.244	482.321.454.193.561
ITV23438	1519	201.026.237.623.762	426.796.703.147.156
ITV23489	2102	239.884.455.958.549	553.847.579.965.166
ITV23490	2232	262.921.634.615.385	556.570.233.504.189
ITV23491	1919	219.071.641.791.045	532.545.142.916.423
ITV23492	2212	250.194.117.647.059	563.723.630.792.026
ITV23493	2221	263.276.339.285.714	526.129.553.452.179
ITV23494	2215	262.072.289.156.626	497.886.806.680.309
ITV22287	1424	193.210.344.827.586	408.361.731.548.032
ITV23452	1112	1355	478.877.130.864.969
ITV23453	2056	238.983.152.173.913	542.651.992.497.222
ITV23454	2001	247.011.570.247.934	521.917.004.570.334
ITV23517	1676	197.350.510.204.082	504.753.313.822.982
ITV23518	68	144.153.846.153.846	399.594.394.420.345
ITV23519	1286	152.254.362.416.107	484.681.774.040.762
ITV23520	2299	259.617.256.637.168	553.150.177.402.212
ITV23521	2302	266.163.793.103.448	571.938.842.061.164
ITV23522	1288	141.819.008.264.463	473.118.479.684.103
ITV22285	1263	154.010.416.666.667	441.438.000.930.426
ITV22286	1044	121.249.612.403.101	466.303.100.140.085
ITV23455	2089	254.636.111.111.111	46.602.276.179.991
ITV23456	2354	2818.75	526.639.523.025.343
ITV23457	2069	252.947.794.117.647	478.355.909.473.752

Amostra	Observed	Chao1	Shannon
ITV23458	1479	187.927.731.092.437	44.345.687.977.304
ITV23523	2256	2693	547.326.924.289.533
ITV23524	2379	280.646.052.631.579	56.417.731.036.314
ITV23525	2167	254.698.367.346.939	539.589.105.309.804
ITV23526	2156	254.844.488.188.976	547.079.719.897.823
ITV23527	1370	163.849.032.258.065	514.710.681.828.287
ITV23528	1028	126.935.714.285.714	459.753.207.592.088
ITV22275	587	765.327.868.852.459	415.336.936.790.739
ITV22276	2030	248.555.737.704.918	485.237.191.354.399
ITV23431	678	885.035.714.285.714	373.912.227.247.805
ITV23432	308	455.15	250.081.176.614
ITV23433	299	397.783.783.783.784	292.891.490.664.036
ITV23434	744	890.3	397.943.992.335.096
ITV23483	658	908.294.117.647.059	382.831.191.986.382
ITV23484	684	8.690.625	333.711.669.638.033
ITV23485	678	897.947.916.666.667	33.465.052.081.129
ITV23486	322	438.2	358.855.746.640.026
ITV23487	482	626.725.490.196.078	384.711.448.128.312
ITV23488	566	819.122.448.979.592	397.500.337.610.131
ITV22291	1493	1854	504.402.440.537.134
ITV22292	2057	256.013.942.307.692	488.408.533.183.037
ITV23467	2069	25.613.961.352.657	565.314.474.687.741
ITV23468	1713	207.800.552.486.188	522.430.384.134.157
ITV23469	1681	221.014.285.714.286	399.656.977.200.762
ITV23470	1473	184.220.454.545.455	478.803.554.472.977
ITV23541	1914	226.827.135.678.392	561.233.976.916.661
ITV23542	1922	231.326.699.029.126	561.549.281.572.161
ITV23543	2135	2566	562.421.353.751.837
ITV23544	1257	155.799.212.598.425	464.129.165.550.955
ITV23545	2363	27.795.250.965.251	588.405.768.649.202
ITV23546	667	882.384.615.384.615	26.721.920.533.841

APÊNDICE D – Valores para correlação de táxons e parâmetros físicos

Tabela 12 - Valores para correlação de táxons a nível de filo com os parâmetros físicos das cavidades (Estações). Valores de significância:	0.001 (***), 0.01
(**), 0.05 (*). Variável (Env): Projeção Horizontal (PH). Valores de p ajustados (AdjPvalue).	

Таха	Env	Correlação	Pvalue	Tipo	AdjPvalue	Significância
Firmicutes	PH	0.409449784321091	0.00348438538266142	Seco	0.00348438538266142	**
Firmicutes	Desnivel	0.345304105783702	0.0150992115661984	Seco	0.0150992115661984	*
Firmicutes	Area	0.59221882722688	7,38E+08	Seco	7,38E+08	***
Firmicutes	Volume	0.643103479991677	6,26E+07	Seco	6,26E+07	***
Verrucomicrobia	Altitude	-0.371021001158647	0.00798813019710029	Chuvoso	0.00798813019710029	**
Verrucomicrobia	Altitude	-0.282201067934008	0.0494670309060822	Seco	0.0494670309060822	*
Verrucomicrobia	Desnivel	-0.283245126361548	0.0485953627997342	Seco	0.0485953627997342	*
Bacteroidetes	Altitude	-0.415739580868152	0.00267710232253994	Chuvoso	0.00267710232253994	**
Nitrospirae	Altitude	-0.347470752857601	0.0134202331095807	Chuvoso	0.0134202331095807	*
Nitrospirae	Altitude	-0.321611482251869	0.0242339089105006	Seco	0.0242339089105006	*
Deinococcus.Thermus	PH	0.289342261384818	0.041546726366671	Chuvoso	0.041546726366671	*
Deinococcus.Thermus	Area	0.363920474383611	0.00937758172350026	Chuvoso	0.00937758172350026	**
Deinococcus.Thermus	Volume	0.375693851460597	0.00717438183916515	Chuvoso	0.00717438183916515	**
Thaumarchaeota	PH	0.410497484648865	0.00306685822978753	Chuvoso	0.00306685822978753	**
Thaumarchaeota	Area	0.317232317733521	0.0247832387149691	Chuvoso	0.0247832387149691	*
Latescibacteria	Altitude	-0.295997489810984	0.0368789211964214	Chuvoso	0.0368789211964214	*

Tabela 13 - Valores para correlação de táxons a nível de filo com os parâmetros físicos das cavidades (Zonas). Valores de significância: 0.001 (***), 0.01 (***), 0.05 (*). Variável (Env): Projeção Horizontal (PH). Valores de p ajustados (AdjPvalue).

Таха	Env	Correlação	Pvalue	Тіро	AdjPvalue	Significânci a
Acidobacteria	PH	0.346134615422126	0.0484731529545746	Penumbr a	0.0484731529545746	*
Acidobacteria	Area	-0.34635980265856	0.0447857499494335	Afótica	0.0447857499494335	*
Acidobacteria	Volume	-0.3863233490632	0.0240207325424395	Afótica	0.0240207325424395	*
Firmicutes	Altitude	0.35347298749353	0.0402939643722152	Afótica	0.0402939643722152	*
Firmicutes	Area	0.442873837818269	0.0098499013005139 1	Penumbr a	0.0098499013005139 1	**
Firmicutes	Volume	0.469913734078271	0.0057925789298862 4	Penumbr a	0.0057925789298862 4	**
candidate_division_WPS.2	PH	0.404281319816862	0.019623072442463	Penumbr a	0.019623072442463	*
candidate_division_WPS.2	Desnive I	0.352007285276087	0.0481796108955708	Fótica	0.0481796108955708	*
Verrucomicrobia	Altitude	- 0.496736958735251	0.0038283044015882	Fótica	0.0038283044015882	**
Verrucomicrobia	Desnive I	- 0.380023638168644	0.0319181929542919	Fótica	0.0319181929542919	*
Bacteroidetes	Altitude	- 0.435798187513154	0.0099865994070033 3	Afótica	0.0099865994070033 3	**
Bacteroidetes	Altitude	- 0.421154824746162	0.0146546012289169	Penumbr a	0.0146546012289169	*
Nitrospirae	Altitude	- 0.353584377857046	0.0471165131996489	Fótica	0.0471165131996489	*
Planctomycetes	PH	0.375007235646124	0.0315268734855984	Penumbr a	0.0315268734855984	*
Candidatus_Saccharibacteri a	Altitude	- 0.355102927601979	0.0393177440523888	Afótica	0.0393177440523888	*
Candidatus_Saccharibacteri a	Altitude	- 0.344189952279899	0.0498350391567603	Penumbr a	0.0498350391567603	*
Gemmatimonadetes	Desnive I	-0.40938447006144	0.019980844054967	Fótica	0.019980844054967	*

Таха	Env	Correlação	Pvalue	Tipo	AdjPvalue	Significânci
						а
Armatimonadetes	Altitude	-	0.0215689545157897	Afótica	0.0215689545157897	*
		0.392786069152393				
Deinococcus.Thermus	PH	0.551058274193884	0.0010808030323887 3	Fótica	0.0010808030323887 3	**
Deinococcus.Thermus	Desnive I	0.463176964534387	0.0075931181416495	Fótica	0.0075931181416495	**
Deinococcus.Thermus	Area	0.774746455739495	1,95E+07	Fótica	1,95E+07	***
Deinococcus.Thermus	Volume	0.852882283212196	5,71E+04	Fótica	5,71E+04	***
Thaumarchaeota	PH	0.371225015439004	0.0306539466497485	Afótica	0.0306539466497485	*
Thaumarchaeota	Desnive I	0.362332682674581	0.0352154662216596	Afótica	0.0352154662216596	*
Thaumarchaeota	Area	0.4780868898445	0.0042395503703765 8	Afótica	0.0042395503703765 8	**
Thaumarchaeota	Volume	0.487864203912113	0.0034238569180983 8	Afótica	0.0034238569180983 8	**
Latescibacteria	Altitude	- 0.362552063576257	0.0381221901989391	Penumbr a	0.0381221901989391	*

Tabela 14 - Valores para correlação de táxons a nível de gênero com os parâmetros físicos das cavidades (Estações). Valores de significância: 0.001 (***), 0.01 (**), 0.05 (*). Variável (Env): Projeção Horizontal (PH). Valores de p ajustados (AdjPvalue).

Таха	Env	Correlação	Pvalue	Tipo	AdjPvalue	Significância
Mycobacterium	Volume	0.305864844174882	0.0325738575877282	Seco	0.0325738575877282	*
Actinomadura	PH	-0.336647356969451	0.0180207236919882	Seco	0.0180207236919882	*
Actinomadura	Area	-0.348195037651138	0.0142181585859567	Seco	0.0142181585859567	*
Actinomadura	Volume	-0.30218754826779	0.0348308540078332	Seco	0.0348308540078332	*
Bacillus	PH	0.623926405729165	1,67E+08	Seco	1,67E+08	***
Bacillus	Desnivel	0.530551608856944	8,81E+09	Seco	8,81E+09	***
Bacillus	Area	0.770394420544094	9,63E+02	Seco	9,63E+02	***
Bacillus	Volume	0.813165717418697	1,26E+02	Seco	1,26E+02	***
Arthrobacter	Altitude	0.340811878058002	0.0165604447375487	Seco	0.0165604447375487	*

Таха	Env	Correlação	Pvalue	Tipo	AdjPvalue	Significância
Streptacidiphilus	PH	0.281716113720273	0.0474798743289112	Chuvoso	0.0474798743289112	*
Streptacidiphilus	Desnivel	0.28725299879173	0.0431082192957073	Chuvoso	0.0431082192957073	*
Streptacidiphilus	Area	0.324918857677633	0.0213200088814149	Chuvoso	0.0213200088814149	*
Streptacidiphilus	Volume	0.33835659491928	0.0162439324992935	Chuvoso	0.0162439324992935	*
Alicyclobacillus	Altitude	0.327945985295273	0.0200729387925576	Chuvoso	0.0200729387925576	*
Massilia	Altitude	-0.306206204888113	0.0305653917731129	Chuvoso	0.0305653917731129	*
Solirubrobacter	PH	-0.404692688466078	0.00392378139643805	Seco	0.00392378139643805	**
Solirubrobacter	Desnivel	-0.384895753119258	0.00631815017246363	Seco	0.00631815017246363	**
Solirubrobacter	Area	-0.372023173593441	0.00848458747854866	Seco	0.00848458747854866	**
Solirubrobacter	Volume	-0.351215290069448	0.0133449421497269	Seco	0.0133449421497269	*
Rhodococcus	PH	0.376008630015319	0.00712225333893381	Chuvoso	0.00712225333893381	**
Rhodococcus	PH	0.364906482525803	0.00993814881302478	Seco	0.00993814881302478	**
Rhodococcus	Area	0.432081984640599	0.00172798639878322	Chuvoso	0.00172798639878322	**
Rhodococcus	Area	0.45696516933682	0.000964537991489185	Seco	0.000964537991489185	***
Rhodococcus	Volume	0.437637373221599	0.00148165581245528	Chuvoso	0.00148165581245528	**
Rhodococcus	Volume	0.47508255928087	0.000561904469326333	Seco	0.000561904469326333	***
Actinoallomurus	PH	-0.291136195302006	0.0424032463635466	Seco	0.0424032463635466	*
Aciditerrimonas	Altitude	-0.307772739029466	0.0314514688856178	Seco	0.0314514688856178	*
Aciditerrimonas	PH	-0.366740419790415	0.00954442821460839	Seco	0.00954442821460839	**
Aciditerrimonas	Desnivel	-0.330588181950118	0.0203393067665561	Seco	0.0203393067665561	*
Aciditerrimonas	Area	-0.325145356157942	0.0226319609052332	Seco	0.0226319609052332	*
Aciditerrimonas	Volume	-0.291202699876191	0.0423539450853334	Seco	0.0423539450853334	*
Nitrospira	Altitude	-0.347470752857601	0.0134202331095807	Chuvoso	0.0134202331095807	*
Nitrospira	Altitude	-0.321611482251869	0.0242339089105006	Seco	0.0242339089105006	*
Micromonospora	Altitude	0.346944745653313	0.0145936644775454	Seco	0.0145936644775454	*
Paenibacillus	Altitude	-0.310622291578893	0.0281275727600551	Chuvoso	0.0281275727600551	*
Paenibacillus	Volume	0.304095669003674	0.0336441042220527	Seco	0.0336441042220527	*
Stenotrophomonas	PH	0.292768204723243	0.0412068863007624	Seco	0.0412068863007624	*
Stenotrophomonas	Area	0.392551708493684	0.00527281921415315	Seco	0.00527281921415315	**
Stenotrophomonas	Volume	0.41544804184953	0.00299246636794236	Seco	0.00299246636794236	**

Таха	Env	Correlação	Pvalue	Тіро	AdjPvalue	Significância
Mycobacterium	Volume	0.342402863046032	0.0474533182540474	Afótica	0.0474533182540474	*
Actinomadura	PH	-0.504109505032413	0.00236718888655353	Afótica	0.00236718888655353	**
Actinomadura	Desnivel	-0.390607231316875	0.0223712453620906	Afótica	0.0223712453620906	*
Actinomadura	Area	-0.44571406930797	0.00824595333738743	Afótica	0.00824595333738743	**
Actinomadura	Volume	-0.395986356532405	0.0204338874312862	Afótica	0.0204338874312862	*
Bacillus	PH	0.359999243735558	0.0364996196442672	Afótica	0.0364996196442672	*
Bacillus	PH	0.575658905344975	0.000456373834247069	Penumbra	0.000456373834247069	***
Bacillus	Desnivel	0.450581421342038	0.00850254003758408	Penumbra	0.00850254003758408	**
Bacillus	Area	0.442909864315804	0.00870976808711423	Afótica	0.00870976808711423	**
Bacillus	Area	0.663846427391056	2,53E+09	Penumbra	2,53E+09	***
Bacillus	Volume	0.485209791336746	0.00363058657516837	Afótica	0.00363058657516837	**
Bacillus	Volume	0.678242905583691	1,44E+09	Penumbra	1,44E+09	***
Bradyrhizobium	Area	-0.37029842390361	0.0311054587811669	Afótica	0.0311054587811669	*
Bradyrhizobium	Volume	-0.342234094154856	0.0475698604644622	Afótica	0.0475698604644622	*
Streptacidiphilus	PH	0.354512419060982	0.0429419057206745	Penumbra	0.0429419057206745	*
Streptacidiphilus	Desnivel	0.429859134265279	0.0125348779296873	Penumbra	0.0125348779296873	*
Streptacidiphilus	Area	0.396667027260448	0.0222844275682708	Penumbra	0.0222844275682708	*
Streptacidiphilus	Volume	0.399622729417384	0.0212179737489745	Penumbra	0.0212179737489745	*
Alicyclobacillus	Altitude	0.340986688138811	0.0484383684406311	Afótica	0.0484383684406311	*
Alicyclobacillus	Altitude	0.355484774400187	0.0423342066005337	Penumbra	0.0423342066005337	*
Actinoalloteichus	PH	-0.370693051183057	0.0367444903912205	Fótica	0.0367444903912205	*
Actinoalloteichus	Desnivel	-0.372043908204755	0.036011329246724	Fótica	0.036011329246724	*
Solirubrobacter	PH	-0.463949315448408	0.00571305919412315	Afótica	0.00571305919412315	**
Solirubrobacter	Area	-0.420699777970984	0.0132301270947828	Afótica	0.0132301270947828	*
Solirubrobacter	Volume	-0.354530706879148	0.0396582628860882	Afótica	0.0396582628860882	*
Rhodococcus	PH	0.50880266967748	0.00212060660935308	Afótica	0.00212060660935308	**
Rhodococcus	PH	0.350622359730252	0.0454435557542448	Penumbra	0.0454435557542448	*

Tabela 15 - Valores para correlação de táxons a nível de gênero com os parâmetros físicos das cavidades (Zona). Valores de significância: 0.001 (***), 0.01 (***), 0.05 (*). Variável (Env): Projeção Horizontal (PH). Valores de p ajustados (AdjPvalue).

Таха	Env	Correlação	Pvalue	Тіро	AdjPvalue	Significância
Rhodococcus	Desnivel	0.39688376099662	0.0201246555045853	Afótica	0.0201246555045853	*
Rhodococcus	Area	0.552201984331964	0.000709305171435733	Afótica	0.000709305171435733	***
Rhodococcus	Area	0.449176436577793	0.00873575350043484	Penumbra	0.00873575350043484	**
Rhodococcus	Volume	0.541548074157748	0.000940880143331129	Afótica	0.000940880143331129	***
Rhodococcus	Volume	0.461652263395285	0.00684306410794544	Penumbra	0.00684306410794544	**
Rhodanobacter	Desnivel	0.372299541292381	0.0358739281682495	Fótica	0.0358739281682495	*
Rhodanobacter	Area	0.347463180912266	0.0475599337699659	Penumbra	0.0475599337699659	*
Rhodanobacter	Volume	0.352684059332875	0.0441035550205142	Penumbra	0.0441035550205142	*
Dyella	PH	0.505704440189932	0.00268015860760264	Penumbra	0.00268015860760264	**
Dyella	Desnivel	0.519806542519858	0.00193267593516999	Penumbra	0.00193267593516999	**
Dyella	Area	0.612653719933725	0.000150730947885316	Penumbra	0.000150730947885316	***
Dyella	Volume	0.634029980512605	7,44E+09	Penumbra	7,44E+09	***
Aciditerrimonas	PH	-0.468853275724263	0.00515869288345518	Afótica	0.00515869288345518	**
Aciditerrimonas	Area	-0.385778235325777	0.0242376449397992	Afótica	0.0242376449397992	*
Nitrospira	Altitude	-0.353584377857046	0.0471165131996489	Fótica	0.0471165131996489	*
Micromonospora	Altitude	0.422191984773173	0.0143872533238378	Penumbra	0.0143872533238378	*
Micromonospora	PH	0.419331433509442	0.0168939583785989	Fótica	0.0168939583785989	*
Stenotrophomonas	PH	0.54520564278098	0.00103405019175075	Penumbra	0.00103405019175075	**
Stenotrophomonas	Desnivel	0.455066670490746	0.00779310072657803	Penumbra	0.00779310072657803	**
Stenotrophomonas	Area	0.653190727329113	3,77E+09	Penumbra	3,77E+09	***
Stenotrophomonas	Volume	0.672298583445689	1,83E+09	Penumbra	1,83E+09	***