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Abstract

Abstract of Dissertation presented to the Graduate Program on Instrumentation, Control and
Automation of Mining Process as a partial fulfillment of the requirements for the degree of
Master of Science (M.Sc.)

PRODUCT SEQUENCING AND BLENDING OF RAW MATERIALS TO FEED ARC
FURNACES: A DECISION SUPPORT SYSTEM FOR A MINING-METALLURGICAL

INDUSTRY

Rafael de Freitas Bacharel

September/2021

Advisors: Marcone Jamilson Freitas Souza
Luciano Perdigão Cota

A large amount of data available today and the complex situations present in the industry make
decision support systems increasingly necessary. This work deals with a problem of a mining-
metallurgical industry in which the production of products used to feed arc furnaces must be
sequenced in work shifts. There is a due date and a quality specification for each product. These
products are generated from raw materials available in a set of silos and must satisfy the required
quality specifications. The aim is to minimize the total production time and the total tardiness.
To solve it, we developed a decision support system that applies a matheuristic algorithm to do
the product schedule and determine the amount of raw material to produce each product. In the
proposed algorithm, the products generated in each work shift are chosen through a dispatch
heuristic rule based on the shortest production time. In turn, the amount of raw material to be
used is calculated by solving a goal linear programming formulation of a blending problem.
We generate instances that simulate real cases to evaluate the developed algorithm. The results
generated for these instances show a good performance of the proposed algorithm, validating
its use as a tool to support decision-making.

Keywords: Arc furnace, Decision support system, Blending, Matheuristic, Operations research
in industry.

Macrotheme: Power Plant; Research Line: Information, Communication and Industrial Au-
tomation Technologies; Theme: Product quality improvement;
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Resumo

Resumo da Dissertação apresentada ao Programa de Pós Graduação em Instrumentação,
Controle e Automação de Processos de Mineração como parte dos requisitos necessários para a
obtenção do grau de Mestre em Ciências (M.Sc.)

SEQUENCIAMENTO DA PRODUÇÃO E BLENDAGEM DE MATÉRIAS-PRIMAS PARA
ALIMENTAÇÃO DE FORNOS A ARCO: UM SISTEMA DE SUPORTE À DECISÃO

PARA UMA INDÚSTRIA MINERO-METALÚRGICA

Rafael de Freitas Bacharel

September/2021

Orientadores: Marcone Jamilson Freitas Souza
Luciano Perdigão Cota

A grande quantidade de dados disponı́veis hoje e as situações complexas presentes na indústria
tornam os sistemas de apoio à decisão cada vez mais necessários. Este trabalho trata de um
problema de uma indústria minero-metalúrgica na qual a produção dos produtos utilizados na
alimentação dos fornos a arco deve ser sequenciada em turnos de trabalho. Para cada produto há
uma data de vencimento e uma especificação de qualidade. Esses produtos são gerados a partir
de matérias-primas disponı́veis em um conjunto de silos e devem atender às especificações de
qualidade exigidas. O objetivo é minimizar o tempo total de produção e o atraso total. Para re-
solvê-lo, desenvolvemos um sistema de apoio à decisão que aplica um algoritmo matheurı́stico
para sequenciar a produção e determinar a quantidade de matéria-prima necessária para produzir
cada produto. No algoritmo proposto, os produtos gerados em cada turno de trabalho são esco-
lhidos por meio de uma regra heurı́stica de despacho baseada no menor tempo de produção. Por
sua vez, a quantidade de matéria-prima a ser utilizada é calculada resolvendo uma formulação
de programação linear por metas para o problema de mistura. Geramos instâncias que simulam
casos reais para avaliar o algoritmo desenvolvido. Os resultados gerados para estas instâncias
mostram um bom desempenho do algoritmo proposto, validando sua utilização como ferra-
menta de apoio à tomada de decisão.

Palavras-chave: Forno a arco, Sistema de suporte à decisão, Blendagem, Matheurı́stica, Pes-
quisa operacional na indústria.

Macrotema: Usina; Linha de Pesquisa: Tecnologias da Informação, Comunicação e
Automação Industrial; Tema: Melhoria da qualidade de produtos;
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1. Introduction

The mining and metallurgy industries are essential for the country’s economic develop-
ment. Mining is responsible for more than 20% of Brazilian exports in the last ten years, and
metallurgy is the primary destination for foreign direct investment in the industry, according to
Carvalho et al. (2017). These strategic sectors continuously seek to incorporate knowledge and
technology to increase production and profit, reduce costs, and reduce environmental impacts.

According to Luz et al. (2010), the processing of ores consists of operations that alter
the granulometry, concentration, or shape of minerals. A rock consisting of a mineral or ag-
gregate of minerals containing one or more valuable minerals is characterized as an ore. The
operations carried out in the processing of ores, also known as unitary operations, consist briefly
of extracting the ore, comminution, concentration, and disposal of the tailings. The flowchart
in Figure 1.1 shows the typical unit operations of the mineral industry.

Figure 1.1: Typical flowchart of unit operations in the mineral industry. Adapted from Luz et al.
(2010).

The metallurgical industry is responsible for transforming ores or impure or raw metals
into metals free of impurities, which can therefore be used in final applications such as sheets
and tubes, among others. According to Seetharaman et al. (2014), its production process ty-
pically involves the stages of separation, formation of the metallic solution, production of the
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crude metal, purification, and preparation of the product, as shown in Figure 1.2.

Figure 1.2: Typical flowchart of production stages in the metallurgical industry. Adapted from
Seetharaman et al. (2014).

Briefly, the following metallurgical processes can be mentioned, according to Seethara-
man et al. (2014):

• Pyrometallurgy: It uses high temperatures for the treatment of high-quality ores and recy-
cled materials. Even with high temperatures, this process has a low energy consumption
as it can use exothermic chemical reactions and energy from second-generation systems.
Among metallurgical processes, pyrometallurgy represents the cleanest process with the
most negligible environmental impact.

• Hydrometallurgy: This process uses chemical reactions from aqueous solutions to sepa-
rate metals from low-quality ores. Due to this, its processing rate is limited to the speed
of reactions. The treatment of effluents generated to remove harmful substances must be
taken into account to reduce the environmental impact of this type of process.

• Electrometallurgy: Electrochemical methods are used to separate metals. It has low pro-
cessing rates and high storage costs. However, it is used for high-value metals.

In mining-metallurgical industries, the ore explored is concentrated and becomes a pro-
duct used in metallurgical processes. For this work, a pyrometallurgical process is analyzed.
First, a primary arc furnace receives as feed the concentrated mineral already agglutinated in
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sinter, besides coal and scrap for burning. After the material melts, the slag is separated, and the
material flows through a leakage channel where it is conditioned in tanks. This material is then
filtered, dried, and stored in silos in subsequent unit operations, as shown in Figure 1.3. With
the material ready for use, it is then removed from the silos to generate a mixture to be used in
a secondary arc furnace responsible for producing the desired metal alloys.

Figure 1.3: General flowchart of the approached process.

Arc furnaces are one of the most important pieces of equipment in the metallurgical
industry due to their versatility in producing different types of steel. According to Worldsteel
(2020), of all global crude steel production in 2019, 27.9% resulted from arc furnaces. Usually,
an arc furnace is fed by scrap and elements from different alloys, allowing the adjustment of the
steel’s chemical composition to be generated.

Equipment such as arc furnaces still has a low level of automation in its operation,
leaving the production decisions to be carried out by its operators according to their experiences
Shyamal and Swartz (2017). A survey carried out by Olivier and Craig (2017) on the degree of
automation in the global mineral processing industry shows that operators’ actions on processes
are still frequent. Given the massive amount of data generated by industrial processes and the
different situations for decision making, decision support systems are increasingly important,
as they allow a complete analysis of the entire production chain Liu and Zaraté (2014).

The present work deals with a problem of a mining-metallurgical industry in which the
production that feeds arc furnaces must be sequenced in work shifts. In the company under
study, this task is done manually.

Sequencing the production and performing the correct blending of materials is a pro-
blem found in different industry types. For example, in the oil industry, Bayu et al. (2020)
deals with the scheduling of gasoline blending and distribution. Franzoi et al. (2019) address
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the scheduling of processing units and blending for gasoline production. Pereira et al. (2018,
2020) deals with a crude oil scheduling problem in a refinery using a multi-objective evolu-
tionary algorithm. For the mineral industry, Rezakhah et al. (2020) consider ore blending in
stockpiles from the open-pit mine scheduling. However, to our knowledge, the problem of pro-
duct sequencing and blending of raw materials to feed arc furnaces has not yet been addressed
in the literature. Feeding an arc furnace with the correct blend of raw materials requires impor-
tant decisions, as this can affect steel specifications. The blending process allows generating a
product with the right proportions of raw material, increasing the quality of production and its
economic benefits Lingshuang et al. (2013). Besides, scheduling efficiently the products that
feed the furnace reduces the total production time and generates more products.

This work proposes a decision support system based on a matheuristic algorithm to
perform the production scheduling and determine the blends that form each product in different
planning horizons. A heuristic dispatch rule chooses the products to be produced in each work
shift. The optimal quantities of raw materials to generate each product are determined through a
goal linear programming formulation. As the proposed algorithm combines heuristic and exact
procedures, it is considered a matheuristic, according to Ribeiro et al. (2020). We generate
instances that simulate real cases to evaluate the developed algorithm. The results generated
show a good performance of the proposed algorithm, validating its use as a tool to support
decision-making.

This work differs from the others in the literature for dealing with the problem of product
sequencing and blending of raw materials to feed arc furnaces, considering simultaneously: 1)
the blending of raw materials, stored in silos, to generate products obeying lower and upper
bounds for their control parameters; 2) the blending aiming to minimize deviations from the
grade targets for the control parameters of the products generated; 3) the continuous feeding of
silos; 4) the sequencing of these products into work shifts within a planning horizon.

1.1. Motivation

Many decisions related to production processes in industries are still reserved for ope-
rators in the control room because it is believed that their experience is the best option to the
problems encountered. However, these choices can lead to suboptimal solutions, which increase
time and costs.

There are several motivations for carrying out this work. Firstly, the importance of
solving a real-world problem, the production scheduling to feed arc furnaces in a mining-
metallurgical industry. Secondly, the opportunity for disseminating and implementation of op-
timization concepts. Finally, this work contributes to assisting the decision-makers in solving
the problems.
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1.2. Objectives

1.2.1. General objective

This work aims to develop a decision support system using heuristic and mathematical
programming techniques to support decision-making in the production schedule to feed arc
furnaces seeking to minimize production time and respect the required quality specifications
for the products generated.

1.2.2. Specific objectives

1. Characterize the production schedule to feed arc furnaces in a mining-metallurgical in-
dustry;

2. Apply a mathematical programming formulation to obtain the optimal blending of avai-
lable raw materials;

3. Develop and implement a matheuristic algorithm for the scheduling problem;

4. Test and validate the proposed algorithms with real instances of the problem.

1.3. Methodology

The steps for achieving the proposed objectives are presented below:

1. Theoretical basis: Study of the essential concepts for understanding the addressed pro-
blem and its solution techniques;

2. Literature review: Analysis of works regarding the optimization of arc furnaces, pro-
duction scheduling in industries, and blending problems;

3. Problem characterization: Characterization of the scheduling and blending problem
under study and description of the production process;

4. Solution proposal: Presentation of a goal linear programming formulation for the blen-
ding problem, as well as a matheuristic algorithm for treating the scheduling problem;

5. Validation of the proposed solution: Execution of computational experiments to vali-
date the proposed method, using instances generated based on actual data;

17



1.4. Work structure

The remainder of this dissertation is organized as follows. Chapter 2 presents a brief in-
troduction of the main concepts and techniques used to develop the work. A literature review is
done in Chapter 3. In Chapter 4, the problem is characterized. Chapter 5 shows the formulation
developed for the blending problem. Chapter 6 presents the proposed matheuristic algorithm
for the production scheduling problem. Computational experiments are reported and discussed
in Chapter 7. Finally, the conclusions and proposals for future work are presented in Chapter 8.
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2. Theoretical Background

This chapter is organized as follows. Initially, in Section 2.1, we illustrated a scheduling
problem and a dispatch rule to solve it. Section 2.2 presents the blending problem and its linear
programming formulation.

2.1. Scheduling problem

In general, scheduling can be understood as a process of sequencing and allocating jobs
and resources. The objectives of this problem include minimizing the makespan, or weighted
sum of tardiness, or weighted sum of earliness of the jobs (PINEDO, 2012).

According to Pinedo (2012), to build a solution to a scheduling problem, dispatch rules
are usually used, such as Shortest Processing Time (SPT), Earliest Due Date (EDD), Least
Flexible Job First (LFT), among others. As an example of a sequencing problem, consider a
set M = {1,2,3} of identical parallel machines i ∈M and the set N = {A,B,C,D} of jobs
j ∈N . Let p j be the processing times of these jobs showed in Table 2.1.

Table 2.1: Job processing times on identical parallel machines.

Job Processing time
A 2
B 8
C 5
D 9

Suppose that the sequence of jobs was constructed by allocating the shortest duration
job to each machine, as shown in the Gantt chart in Figure 2.1. The schedule of these jobs
results in a makespan of 11 units.

Figure 2.1: Scheduling example.

Now, we describe the dispatch rule named Adaptive Shortest Processing Time (ASPT)
(HADDAD et al., 2011). It is an adaptation of the Shortest Processing Time (SPT) dispatch
rule (BAKER, 1974), which runs jobs in ascending processing times. In this way, the first job
to be executed is the one with the shortest processing time.
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To show how it works, consider the set M of unrelated parallel machines and the set N

of jobs with their processing times pi j presented in Table 2.2. According to the ASPT rule, for
each pair (i, j), where i ∈M and j ∈N , the cost value gi j of processing the job j at the end
of the machine i is evaluated. Then, the pair with the lowest cost is chosen, and we allocate the
job j in the last position of the machine i. This procedure is repeated until all jobs are allocated.

Table 2.2: Processing time of jobs on unrelated parallel machines.

Machines
Jobs 1 2 3

A 2 4 3
B 8 6 10
C 5 4 7
D 9 12 8

Algorithm 1, adapted from Cota (2014), presents the pseudo-code of the ASTP rule.
After initializing solution s in line 1, a loop is executed in lines 2 to 7. In this loop, we choose
the job j to be executed in the machine i with the smallest cost value gi j. Then, in line 5, this
job is included in the partial solution s and removed in line 6 from the set N . We apply this
procedure while there are jobs to execute.

Algorithm 1: ASPT
Data: Set M of machines, Set N of jobs
Result: Solution s
s← /0;1

while (|N |> 0) do2

gmin←min{gi j | i ∈M , j ∈N };3

Select the job j and the machine i associated with the gmin;4

s← s∪{ j} ;5

N ←N \{ j} ;6

end7

return s;8

2.2. Blending problem

According to Arenales et al. (2007), the blending problem consists of combining mate-
rials that present specific quality parameters to generate products with desirable characteristics.
This type of problem is found in several areas such as metal alloys, filter composition, fertilizer
production, among others. Typically, the blending problem is a sub-problem of a more general
problem, such as production planning.

Let the input parameters and decision variables defined below. The blending problem
can be modeled through Equations (2.1)–(2.8):
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a) Input parameters:

• M: Set of materials, M = {1, · · · , |M|};

• S: Set of material quality parameters, S = {1, · · · , |S|};

• tab: Grade of the parameter b ∈ S of material a ∈M, in %;

• ca: Cost of one tonne of material a ∈M;

• Qdes: Total amount desired for the blending, in tonnes;

• tlb: Lower bound for the parameter b ∈ S in the blending, in %;

• tub: Upper bound for the parameter b ∈ S in the blending, in %;

• Qa: Quantity available for material a ∈M, in tonnes;

b) Decision variables:

• xa: Quantity to be used of the material a ∈M in the blend, in tonnes;

c) Objective function:
min ∑

a∈M
ca× xa (2.1)

d) Constraints:

1. The sum of the quantities of materials used must result in the desired quantity for the
blend:

∑
a∈M

xa = Qdes (2.2)

2. The value of the quality parameter b ∈ S cannot be less than its predefined minimum
value:

∑
a∈M

tab× xa

∑
a∈M

xa
≥ tlb ∀b ∈ S (2.3)

Linearizing Equation (2.3):

∑
a∈M

(tab− tlb)× xa ≥ 0 ∀b ∈ S (2.4)

3. The value of the quality parameter b ∈ S cannot be greater than its predefined maximum
value:

∑
a∈M

tab× xa

∑
a∈M

xa
≤ tub ∀b ∈ S (2.5)

Linearizing Equation (2.5):

∑
a∈M

(tab− tub)× xa ≤ 0 ∀b ∈ S (2.6)
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4. The amount of material used is limited by its available quantity:

xa ≤ Qa ∀a ∈M (2.7)

5. The amount of material used cannot be negative:

xa ≥ 0 ∀a ∈M (2.8)
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3. Literature Review

A literature review is performed in this chapter. In Section 3.1, works treating opti-
mization in arc furnaces are presented. In Section 3.2, scheduling problems in mining and
metallurgical industries are treated. Finally, Section 3.3 deals with blending problems in these
industries.

3.1. Arc furnaces

Several works related to arc furnaces deal with reducing energy consumption since this
consumption represents a high cost.

Hernández et al. (2020) seek an optimal melting profile to minimize energy losses during
production batches using mathematical models of an arc furnace. The models are solved by
differential equations, while a control vector parametrization technique obtains the optimum
values for the setpoints.

Saboohi et al. (2019) propose a framework to define various settings for the control of
an arc furnace, such as the employed power, carbon injection, among others. Based on mo-
dels of an arc furnace and their constraints, they try to increase their efficiency by maximizing
the energy transferred to the scrap during refining and, consequently, reduce operating costs.
The authors combine optimization algorithms such as genetic algorithms (GA) (HOLLAND
and HOLLAND, 1975) and sequential quadratic programming (SQP) (BOGGS and TOLLE,
1995) to solve the proposed model. The results show a reduction in energy consumption, in
contrast to an increase in additives, such as oxygen and carbon.

Lin et al. (2012) propose a Multi-objective Particle Swarm Optimization (MOPSO)
(MOORE et al., 2000) algorithm to reduce electricity consumption, refining time, electrode
consumption, and extend the life of the interior furnace. As an output of the algorithm, the de-
veloped power supply model achieves the objectives established in the simulations performed.

3.2. Scheduling in mining and metallurgical industries

There are several approaches in the literature to solve scheduling problems. The most
common is applying heuristic methods, given the complexity of the problem (PINEDO, 2012).

Gomes et al. (2021) develop a matheuristic to schedule the heat treatment line of a mul-
tinational steel company, seeking to minimize the total tardiness and energy costs. The initial
solutions for each objective are generated by a Mixed-Integer Linear Programming (MILP) for-
mulation. The Multi-objective General Variable Neighborhood Search (MOVNS) (GEIGER,
2008) metaheuristic is used to explore the solution space. Tests carried out with industry data
showed reductions in energy consumption and tardiness.

Baykasoğlu and Ozsoydan (2018) present a study of dynamic scheduling of production
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in heat treatment furnaces. Events such as machine breakdown, change in due dates, change
in task priorities, and the arrival of new jobs are considered in the scheduling. They used the
Greedy Randomized Adaptive Search Procedure (GRASP) (RESENDE and RIBEIRO, 2003)
algorithm to generate the solution. In the pilot study carried out, the proposed solution reduced
the total downtime of the furnaces and the consequent increase in production.

Araujo et al. (2008) treat the problem of batch sizing and scheduling production in
small foundries in Brazil. The developed model considers characteristics such as a planning
horizon, variation of the furnace capacity, stock generation, the penalty for delay, and changing
the furnace setup. The authors developed two local search methods and used the Simulated
Annealing (SA) (HENDERSON et al., 2003) metaheuristic to find better solutions.

For works that address sequencing problems, we can cite in the literature (COTA et al.,
2014, 2019; HADDAD et al., 2015; SABERI-ALIABAD et al., 2020).

3.3. Blending in mining and metallurgical industries

Goal linear programming is widely used to solve the blending problem (CHANDA
and DAGDELEN, 1995; COSTA et al., 2005; MORAES et al., 2006). This optimization te-
chnique is used in these works to minimize the quality deviations of the generated products.
Other approaches to the problem are also used, such as fuzzy logic in Xu et al. (2008) and
stochastic optimization in Lingshuang et al. (2013).

Yuan et al. (2020) propose an optimization model for blending coke to be used in blast
furnaces. The goal is to determine the best blend for coke at the lowest cost. Initially, the
authors seek to estimate the quality of the coke using Gaussian functions and the Extreme
Gradient Boosting Algorithm (XGBoost) (CHEN and GUESTRIN, 2016) to select the most
relevant characteristics. Then they apply the Support Vector Regression (SVR) (VAPNIK, 1995)
algorithm to forecast the products to be generated. At least, the blending optimization model
is solved using a modified version of the Particle Swarm Optimization (PSO) (KENNEDY
and EBERHART, 1995) algorithm.

A similar approach to the preparation of the sinter blend is covered in Zhang et al.

(2019). Seeking to maximize profit in the blending of sinter, the authors use the SVR algorithm
to estimate the sinter classification based on the properties of the raw materials and, thus, price
the generated blend. Finally, they use the Non-dominated Sorting Genetic Algorithm II (NSGA-
II) (DEB et al., 2000) algorithm to solve the blending problem. The authors report a reduction
in the cost of the sinter and an increase in production profit.

Huang et al. (2019) aim to reduce energy consumption and production costs with an
optimization model for the sinter blend. Initially, the quantities of raw materials that make up
the blending are defined considering, in addition to the different qualities, the granulation, and
mineralization properties. An initial solution for the blend is generated through linear program-
ming. This solution is used as input to a GA, which generates a group of blending schemes.
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Then, the chemical properties of the raw materials of these blending schemes are used as inputs
of the Least Squares Support Vector Machine (LS-SVM) (SUYKENS and VANDEWALLE,
1999) algorithm for the prediction of energy consumption and productivity in the sintering pro-
cess. Finally, the blends and their respective blending cost, energy consumption, and produc-
tivity rates are evaluated. The blending scheme with the highest economic and technical value
is selected. The authors report a significant reduction in carbon emissions for the considered
process.
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4. Problem Statement

The problem of sequencing products to feed the arc furnace under study has the fol-
lowing characteristics:

1. There is a set M of ores of different qualities to be used as raw material, M = {1, · · · , |M|};

2. There is a set SM of silos to store the raw material, SM = {1, · · · , |SM|};

3. There is a set PR of products to be generated from the blend of raw materials, PR =

{1, · · · , |PR|};

4. There is a set S of quality parameters for raw materials and products, S = {1, · · · , |S|};

5. There is a production planning horizon H, in minutes;

6. There is a set SF of screw feeders, SF = {1, · · · , |SF |};

7. Each screw feeder sf ∈ SF belongs to a raw material silo a ∈ SM;

8. There is a set CB of conveyor belts, CB = {1, · · · , |CB|};

9. Each product j ∈ PR is associated with a processing time p j and a due date d j;

10. Each product j ∈ PR is associated with a type of raw material;

11. Every silo a ∈ SM stores a maximum of Qu tonnes of raw material;

12. Every silo a ∈ SM must store at least Ql tonnes of raw material;

13. The material contained in each raw material silo a ∈ SM is associated with a type of raw
material;

14. The grade of the parameter b ∈ S in the raw material silo a ∈ SM is given by tab, in %;

15. The recommended grade of the parameter b ∈ S in the product j ∈ PR is given by tr jb, in
%;

16. For each product j ∈ PR, there is a lower and upper bound for the control parameter b∈ S,
given by tl jb and tu jb, in %, respectively, to be met;

17. When a raw material silo is being fed, it cannot be used in the productive process.

The goal is to generate a production sequence that meets the required quality specifica-
tions and minimizes the weighted sum of the makespan and the total tardiness, given by:

minαCmax +(1−α) ∑
j∈PR

Tj (4.1)

where:
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1. α ∈ [0.1] is a parameter that reflects the importance of each parcel of the objective func-
tion;

2. C j is the completion time of the product j, in minutes;

3. Cmax = max{C j, j ∈ PR}, in minutes;

4. Tj = max{C j−d j,0} is the tardiness of the product j, in minutes.

The following images describe the production process. Figure 4.1 illustrates raw mate-
rial silos and the tripper car to distribute the material into the silos. As Wills and Finch (2015),
a tripper car is a machine capable of moving on rails and positioning itself above the silos,
allowing its load to be delivered to one or more silos. In the analyzed process, one silo is fed
at a time. Each raw material silo receives a type of ore with a given chemical composition,
determined by laboratory analysis. The material that feeds each of the raw material silos comes
from a previous process step, not covered in this work.

Figure 4.1: Example of setting up silos for storing blends and tripper car.

Below each silo of raw material, there is a screw feeder, equipment responsible for re-
moving the desired amount of material to compose the product to be generated. This removed
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material is then deposited on conveyor belts, which send it to the product storage silo, repre-
sented in Figure 4.2. Once the product is generated, it is then consumed in the next stage of the
production process, that is, in the feeding of the arc furnace.

Figure 4.2: Example of setting up silos for storing blends.

To illustrate a solution to this problem, let Table 4.1 be an example of a production
planning to be executed. Table 4.1 reports the product characteristics in this sequence: product
ID, mass, type of material, the due date, and its respective desired chemical composition.

Table 4.1: Production planning to be executed.

Mass Due Parameters (%)
Products (tonnes) Material date (min) A B C D E

1 18 0 480 21.65 0.87 0.66 68.59 4.32
2 18 3 960 24.11 2.26 1.23 69.17 4.16
3 18 1 960 24.39 1.32 0.59 68.53 5.38
4 21 2 480 22.75 1.92 1.17 67.49 4.29

Table 4.2 presents the values of mass, type of material, and the grade of each control
parameter of the ores contained in the silos of raw materials in the initial instant.

From Tables 4.1 and 4.2, it is possible to calculate the composition of the blending
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Table 4.2: Characteristics of raw material silos.

Mass Parameters (%)
Silo (tonnes) Material A B C D E

1 67.00 0 24.23 2.48 0.69 68.58 4.08
2 67.51 2 20.66 2.48 1.12 67.69 5.38
3 70.18 3 24.02 0.85 1.00 68.22 5.33
4 159.65 3 24.93 2.24 1.15 69.47 4.28
5 61.23 1 21.37 1.59 0.89 68.26 5.44
6 171.16 0 26.57 0.74 1.23 69.79 5.89
7 253.44 2 24.35 0.50 1.04 68.11 5.12

required to generate each product. The raw materials used in this blend must be those available
in silos that have the same type of raw material required by the product.

When defining the amount of material to be removed from each raw material silo, the
screw feeders located just below these are activated, except for those whose amount of material
is null. Then, the material is transferred by conveyor belts and sent to the product silo.
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5. The Mathematical Formulation of the Blending Problem

The blending problem can be approached through a goal linear programming formula-
tion, associating a deviation variable for each constraint that cannot be obeyed. These deviation
variables measure distances from target values to be achieved and represent goals to be reached.
So, the objective function of this formulation is formed by the weighted sum of these goals and
should be minimized. We adapt the model by Moraes et al. (2006) to solve the blending pro-
blem. As the model is applied to generate a single product, for simplicity, we have eliminated
the index j in the input data defined in items 15, and 16 of Section 4.

Input data:

1. SM: Set of raw material storage silos;

2. S: Set of quality parameters for raw materials and products;

3. PR: Set of products to be generated from the blend of raw materials;

4. tab: Grade of the parameter b ∈ S of the raw material stored in the silo a ∈ SM;

5. trb: Target for the parameter b ∈ S in the blending;

6. tlb: Lower bound for the parameter b ∈ S in the blending;

7. tub: Upper bound for the parameter b ∈ S in the blending;

8. Qa: Mass available in the silo a ∈ SM;

9. wsa: Weight for the use of the silo a ∈ SM;

10. Qdes: Desired mass for the product;

11. wmb: Weight for the deviations from the grade target of the parameter b ∈ S;

12. typea: Binary parameter that assumes value 1 if the raw material silo a∈ SM has the same
type of material desired for the product j to be blended and 0, otherwise;

Decision variables:

1. xa: Quantity of mass to be taken from the raw material of the silo a ∈ SM;

2. dnSiloSMa: Amount of raw material remaining in the silo a ∈ SM, used for blending, in
tonnes;

3. dnmb: Negative deviation from the grade target for the parameter b ∈ S, in tonnes;

4. d pmb: Positive deviation from the grade target for the parameter b ∈ S, in tonnes;
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The blending problem can be formulated through Equations (5.1)–(5.11).

min ∑
b∈S

wmb× (d pmb +dnmb)+ ∑
a∈SM

wsa×dnSiloSMa (5.1)

∑
a∈SM

xa = Qdes (5.2)

xa ≤ Qa ∀a ∈ SM (5.3)

∑
a∈SM

(tab− tlb)× xa ≥ 0 ∀b ∈ S (5.4)

∑
a∈SM

(tab− tub)× xa ≤ 0 ∀b ∈ S (5.5)

∑
a∈SM

(tab− trb)× xa +dnmb−d pmb = 0 ∀b ∈ S (5.6)

xa +dnSiloSMa = Qa× typea ∀a ∈ SM (5.7)

xa ≥ 0 ∀a ∈ SM (5.8)

dnSiloSMa ≥ 0 ∀a ∈ SM (5.9)

dnmb ≥ 0 ∀b ∈ S (5.10)

d pmb ≥ 0 ∀b ∈ S (5.11)

The objective function described by Equation (5.1) seeks to minimize the deviations
from the grade target for all parameters and the amount of raw material remaining in the silo
used for blending. The constraints applied to the model are presented by Equations (5.2)
to (5.7). Constraints (5.2) determine that Qdes tonnes of product will be produced. Cons-
traints (5.3) ensure that the mass to be removed from each raw material silo cannot be greater
than its available mass. Constraints (5.4) and (5.5) ensure compliance with the lower and up-
per specification limits, while constraints (5.6) seek to meet the grade target. Constraints (5.7)
indicate that all material from a raw material silo should be removed whenever possible. Equa-
tions (5.8–5.11) establish the domain of the decision variables.

When solving the blending problem, the mathematical model returns that there is no
feasible solution or, if there is, it returns a solution that satisfies the lower and upper bounds
stated for the product, minimizing the weighted objective function given by Equation (5.1).
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6. Proposed Algorithm

A matheuristic algorithm for decision support, named DSS ASPT, is proposed to sche-
dule the desired products. It combines the Adaptive Shortest Processing Time (ASPT) (BAKER,
1974) heuristic procedure to generate the production sequence and a goal linear programming
formulation to solve the blending problem. Its pseudo-code is presented by Algorithm 2.

As input parameters, Algorithm 2 receives the set SM of raw material silos, the set PR

of products to be generated, and the production planning horizon H. Besides, the parameter α ,
the minimum (Ql) and maximum (Qu) mass values for a raw material silo, and a list containing
the minimum (tlb) and maximum (tub) values of grades for each parameter b of a given type of
material are algorithm inputs. Finally, the algorithm’s outputs are the solution s containing the
production sequence and its value f o according to Equation (4.1).

First, some variables, sets, and counters used in the algorithm are initialized, such as
the makespan Cmax, the total tardiness T , the instant h of the planning horizon, and others. In
line 3, the list with the limit values of the grades is obtained. In line 4, it is determined how
many days make up the production planning horizon H. So a loop is initialized, and in line 6,
it is determined which products p ∈ PR have a due date for the day analyzed, generating the set
PRDay. These products are then removed from the set PR so that they are not analyzed in the
next iteration.

In line 8, the rejected products from the set PRRe jected are handled by the rejected pro-
ducts treatment (RPT) function. Nothing will be processed in the first iteration of the loop, as
there are still no rejected products. Algorithm 3 describes the pseudo-code of the RPT function
(see Section 6.1.1).

Once processed the rejected products, line 9 checks which products belonging to the set
PRDay are candidates to be produced. Then, it is solved the blending problem for each product
in the set PRDay. The optimizer returns the mass values to be extracted from the raw material
silos, indicating whether the product is a candidate to be generated or not. If the optimizer
returns null values for the mass to be removed, the product is considered rejected. If the product
is rejected, its priority is increased in one unit. The rejected products are then added to the set
PRRe jected to be treated in the next iteration.

Then, we start a loop that operates as long as there is a product p∈ PRCandidates. First, in
line 15, we select a product with the shortest completion time to be produced during the current
work shift. This product is associated with all the information necessary for its production,
such as mass, recommended grades, and acceptable quality limits, i.e., lower and upper bounds
for its control parameters. Once the product is selected, the raw material feed (RMF) function
analyzes in line 16 if there is any raw material silo that must be fed. The RMF function is
described through the pseudo-code of Algorithm 4 (see Section 6.1.2).
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Algorithm 2: DSS ASPT
Data: Set SM of raw material silos, set PR of products to be generated, planning horizon H,

parameter α , minimum mass value Ql, maximum mass value Qu, lower and upper bounds for
the parameters.

Result: Solution s and objective function value fo.
Cmax,T,h,Day, fo← 0;1

PRRe jected ,PRDay,s← /0;2

GradeList = GradeBounds();3

NumDays = GetNumberofDays(H);4

while Day < NumDays do5

PRDay← FindDayProducts(PR,Day);6

PR← PR\PRday;7

(s,PRRe jected) = RPT (SM,PRRe jected ,h,PR,Day,Ql,Qu,GradeList);8

(PRCandidates,PRRe jectedDay) = FindPossibleProducts(PRDay,SM);9

while PRRe jectedDay 6= /0 do10

IncreasePriority(PRRe jectedDay);11

PRRe jected ← PRRe jected ∪ PRRe jectedDay;12

end13

while PRCandidates 6= /0 do14

(p,X) = FindBestProduct(PRCandidates,SM);15

RMF(SM,PR,PRRe jected ,Day,Ql,Qu,GradeList);16

if there are sufficent mass in raw material silos then17

h = h+ p j;18

C j = h;19

T = T +max{C j−d j,0};20

UpdateMass(X ,SM);21

s← s ∪{p};22

PRCandidates← PRCandidates \{p};23

end24

else25

IncreasePriority(p);26

PRRe jected ← PRRe jected ∪{p};27

PRCandidates← PRCandidates \{p};28

end29

end30

Day++;31

end32

if PRRe jectedDay 6= /0 then33

while PRRe jectedDay 6= /0 do34

RMF(SM,PR,PRRe jected ,Day,Ql,Qu,GradeList);35

(s,PRre jeitados) = RPT (SM,PRRe jected ,h,PR,Day,Ql,Qu,GradeList);36

end37

end38

Cmax = h;39

fo = CalculateFO(Cmax,T,α);40

return s, f o;41
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Next, we check whether the raw material silos at that time analyzed contain sufficient
mass to generate the product p. The product is rejected in the lack of mass, and its priority
is increased by one unit for each rejection. If the product is rejected, it is included in the set
PRRe jected and is removed from the set PRCandidates in lines 26 to 28.

If there are sufficient raw materials in silos, the time analyzed h is updated by increasing
it with the processing time of the product generated. The processing time p j is determined by
the longest time spent by the screw feeders for extracting the required amount of mass from the
raw material silos. As the feeders are activated simultaneously, the one that consumes the most
time to finish its activity will be the one that will determine the total duration of the product
processing. The makespan Cmax, the total tardiness T , and the mass present in each silo of raw
material are updated using the UpdateMass(.) function. Then, in line 22, the partial solution s

is updated with the product p and then excluded from the set PRCandidates. The loop ends when
the set PRCandidates is empty.

Finally, we increase the variable Day in line 31, and the loop continues until all the days
of the planning horizon are analyzed.

After evaluating the products for each day of the planning horizon, there may still be
rejected products. Therefore, they are treated in the loop initialized in line 34 until all products
have been generated, ending the production schedule.

6.1. Complementary functions

This section presents the functions that contribute to the execution of the DSS ASPT
algorithm.

6.1.1. RPT function

This function does the treatment of the rejected products in the DSS ASPT algorithm.
It receives as input parameters the set SM of raw material silos, the set PRRe jected of rejected
products, the time h, the mass limit values for a silo of raw material (Qu, Ql), and the lower and
upper grade bounds (tl jb, tu jb) for each parameter b in the product j. The output is the solution
s updated and the set of rejected products PRRe jected .

Algorithm 3 describes its pseudo-code. First, we check which product can be generated
among the rejected products. Then, we initialize a loop to investigate the candidate products. In
line 3, the product of the set PR′Candidates with the highest priority and the shortest duration to
generated it is selected. Then, we check by the RMF function if there is an empty raw material
silo that must be fed.

Suppose there is a sufficient mass of raw material. In that case, we generate the selected
product, update the makespan Cmax, the total tardiness T of the solution, and the mass present in
each raw material silo. We update the partial solution s with the product p in line 10 and exclude
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Algorithm 3: RPT
Data: Set SM of raw materials silos, set PRRe jected of rejected products, time h, set PR of

products, analyzed day Day, minimum mass value Ql, maximum mass value Qu,
lower and upper bounds for the parameters.

Result: Solution s and set PRRe jected .
(PR′Candidates,PR′Re jected) = FindPossibleProducts(PRRe jected ,SM);1

while PR′Candidates 6= /0 do2

(p′,X) = FindPriorityProducts( PR′Candidates,SM);3

RMF(SM,PR,PRRe jected ,Day,Ql,Qu,GradeList);4

if there are sufficent mass in raw material silos then5

h = h+ p′j;6

C′j = h;7

T = T +max{C′j−d′j,0};8

UpdateMass(X ,SM);9

s← s ∪{p′};10

PR′Candidates← PR′Candidates \{p′};11

end12

else13

IncreasePriority(PRRe jected [p′]);14

PR′Candidates← PR′Candidates \{p′};15

end16

end17

while PR′Re jected 6= /0 do18

IncreasePriority(PRRe jected);19

end20

return s,PRRe jected ;21

it from the set PR′Candidates. If there is not enough mass, we reject the product and increase its
priority in line 14. Products that were not considered candidates have their priority increased in
line 19.

6.1.2. RMF function

This function executes the feed of a raw material silo identified as empty. Algorithm 4
describes its pseudo-code.

Initially, we initialize the variables. In line 2, we check if there is an empty raw material
silo. A silo is considered empty if its mass value is less than Ql. If it is empty, the variable
EmptySilo assumes the ID of the empty silo. Otherwise, it receives the value 0.

Lines 3–5 identify the most demanded raw material for both the products of the fol-
lowing day of the planning horizon and rejected products. Knowing the raw material to be fed,
the empty silo is fed until the mass value reaches the value Qu (line 6).

When defining the raw material silo to be fed, the RMF function also determines the
position of the tripper car along the production planning horizon.
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Algorithm 4: RMF
Data: Set SM of raw materials silos, set PR of products, set PRRe jected of rejected products,

analyzed day Day, minimum mass value Ql, maximum mass value Qu, list of grades
for each type of material.

Result: Set SM.
EmptySilo,MaterialType,MPRNextDay,MPRRe jected ← 0;1

EmptySilo = FindEmptySilo(SM,Ql);2

MPRNextDay = FindNextDayMaterial(PR,Day);3

MPRRe jected = FindProductRejectedMaterial(PRre jeitados);4

MaterialType = MostRequestedType(MPRNextDay,MPRRe jected ,PR,PRRe jected);5

SM = FeedSilo(EmptySilo,MaterialType,Qu,GradeList);6

return SM;7
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7. Computational Experiments

The DSS ASPT algorithm was implemented using the C# programming language on the
.NET Framework 4.7.2 platform in the Microsoft Visual Studio Community 2017 development
environment. We execute the tests on a computer with an Intel Core i7-8550U @ 1.80 GHz ×
8 processor, with 16 GB of RAM and Windows 10 64-bit operating system.

To test the algorithm, we generate seven instances based on actual production data from
a mining-metallurgical industry. Each instance has the number of raw material silos, the number
of products to be generated, the planning horizon, and the due date of each product per work
shift. We generate these instances according to the schema below:

1. The flow rate of the screw feeders was set at 30 tonnes/h, and the feed flow of the tripper
car at 28 tonnes/h;

2. The mass of the product j ∈ PR is chosen randomly in the range [0.7×24,24], where the
value 24 represents the maximum mass of the product to be generated in tonnes;

3. The maximum capacity of each raw material silo is Qu = 285 tonnes;

4. The raw material type for generate the product j is chosen randomly in the range [0,3] to
represent each of the four products generated by the company under study;

5. The grades tab of the mass stored in the raw material silo a ∈ SM are chosen randomly in
the range [tlab, tuab], according to the type of raw material stored in silo a;

6. The recommended grades tr jb are chosen randomly in the range [tl jb, tu jb] according to
the type of the product j;

7. The due date d j of the product j ∈ PR is chosen according to the number of products per
work shift, that is, 9 or 10;

8. The mass of material stored in the raw material silo a ∈ SM is chosen randomly in the
interval [0.7×24,Qu];

9. The raw material type stored in silo a is chosen randomly in the range [0,3].

Table 7.1 shows the characteristics of the instances generated. It has the following orga-
nization: i) the first column: index of the instance; ii) the second column: the total of products
to be generated; iii) the third column: the number of products with due date per shift work;
iv) the fourth column: number of raw material silos available; and v) the fifth and sixth: the
production planning horizon. The number of silos represents exactly the structure present in the
studied industry. We will not disclose the quality parameters and raw materials due to industrial
secrecy.
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Table 7.1: Characteristics of the instances.

# Instance # Products # Raw material Planning horizon
Per work shift Total silos Minutes Days

1 9 30 14 1,440 1
2 9 81 14 4,320 3
3 10 90 14 4,320 3
4 9 189 14 10,080 7
5 10 210 14 10,080 7
6 9 270 14 14,400 10
7 10 300 14 14,400 10

We modeled the blending problem through the goal linear programming formulation
described in Section 5 and used the LINGO modeler and optimizer software from Lindo Sys-
tems Inc., version 10, to solve it. In the developed code, the blending input data are passed to
the optimizer through a DLL. The optimizer, in turn, returns the mass to be extracted from each
raw material silo. The weights of quality parameters in the model were classified as Very Im-

portant, Critical, and Very Critical, with weights set to 5, 10, and 100, respectively, according
to the classification of Moraes et al. (2006). Table 7.2 shows the weights used for each quality
parameter considered in the model. The weights wsa were set to a high value (bigM) for all
silos.

Table 7.2: Weights for the quality parameters.

Quality parameters
A B C D E

Weight 5 5 10 100 5

We execute the DSS ASPT algorithm considering equal importance to the makespan
and total tardiness objectives, that is, the parameter α of Equation (4.1) was set to 0.5.

Figure 7.1 shows the graphical interface of the decision support system. The user can
define the number of raw material silos, the number of products to be generated, the planning
horizon, the process flow rates, the maximum mass, and other parameters. Then, when activa-
ting the Run command, the system suggests a product schedule.

Table 7.3 presents the algorithm results. The first three columns report the instance
identifier, the makespan in minutes, and the total tardiness in minutes, respectively. The fourth
column shows the longest tardiness, in minutes, among the sequenced products. The value of
the objective function generated by the solution is presented, in minutes, in the fifth column.
Its sixth column reports the total execution time in seconds. In the last five columns, we re-
port the Average Relative Percentage Deviation (ARPDb) for the parameter b in each instance,
calculated according to Equation (7.1):

38



Figure 7.1: User interface for the decision support system.

ARPDb =

∑
j∈PR
|te jb− tr jb|/tr jb

|PR|
(7.1)

where te jb is the the value encountered for the parameter b in the product j.

Table 7.3: Results of the proposed algorithm per instance.

Makespan Total Maximum Objective Runtime Average Relative Percentage Deviation
Instance (min) tardiness (min) tardiness (min) function (min) (seg) A B C D E

1 660.24 0.00 0.00 330.12 5 0.10 0.16 0.03 0.00 0.08
2 2,114.56 0.00 0.00 1,057.28 16 0.18 0.12 0.04 0.01 0.13
3 2,853.49 0.00 0.00 1,426.75 21 0.14 0.14 0.03 0.01 0.06
4 8,189.96 2,379.56 834.87 5,284.76 67 0.18 0.11 0.03 0.01 0.09
5 10,191.08 62,761.94 2,564.33 36,476.51 157 0.14 0.21 0.04 0.01 0.09
6 12,526.98 76,006.57 3,537.69 44,226.78 215 0.15 0.13 0.05 0.01 0.06
7 14,483.00 122,737.01 4,178.04 68,610.01 267 0.15 0.15 0.07 0.01 0.04

Table 7.3 shows that algorithm DSS ASPT sequences all products. However, the plan-
ning horizon is extrapolated in some instances. This extrapolation occurs in two instances with
more products per work shift. Regarding the total tardiness, although this value was high in
some instances, such as in instance 7, the maximum tardiness was less than three days. These
facts may indicate an oversizing of the production target; fewer products should be produced
per work shift in these instances. The deviations from the quality parameters varied according
to the priority assigned to each one. Thus, parameters with the highest priority had the smallest
deviations. In this case, control parameter D, which has the highest priority, had a maximum
deviation of 1%. Parameter C, which has the second-highest priority, had a maximum deviation
of 7%. The other parameters had a higher deviation, of up to 21%, to reach the target values.
However, it is worth noting that the solution proposed by the algorithm satisfies the lower and
upper bounds of the control parameters. We also highlight that the proposed algorithm consu-
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mes a low runtime, with the highest equal to 267 seconds.
Figures 7.2–7.5 shows the behavior of the mass of the materials present in the raw mate-

rial silos throughout the sequencing. It is possible to observe the feeding behavior of the empty
silos. It is also possible to observe the instants in which only rejected products are treated. In
such instants, we observe that few products are generated due to the unavailability of raw mate-
rials. Yet, at the same time, the empty silo is fed with the most requested material type to meet
the demand for rejected products.

Figure 7.2: Behavior of raw material silos for instance 4.

Figure 7.3: Behavior of raw material silos for instance 5.
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Figure 7.4: Behavior of raw material silos for instance 6.

Figure 7.5: Behavior of raw material silos for instance 7.

Figure 7.6 illustrates through the Gantt chart the schedule generated by the developed
algorithm for the instance 1. In this figure, each colored rectangle represents a product. The
products are showed in the production sequence, and the width of each rectangle indicates
the processing time of the respective product. In this sequencing, the DSS ASPT generated a
solution with a makespan of 660.24 minutes, respecting the desired production planning horizon
of 1440 minutes.
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Figure 7.6: Schedule generated for the instance with 30 products.
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8. Conclusions and Future Works

This work dealt with a production scheduling problem to fed an arc furnace in a mining-
metallurgical industry. The objective of the schedule is to minimize the makespan and the total
tardiness. To solve it, we developed a matheuristic algorithm called DSS ASPT. First, we cho-
ose the products through a heuristic dispatch rule. According to this rule, we select the products
with the shortest processing times among those whose due dates correspond to the work shift
analyzed. Second, the proposed algorithm uses a goal linear programming formulation to solve
the blending problem of raw materials, a sub-problem of the sequencing.

We use seven instances to test the proposed algorithm. These instances contain 30, 90,
210, and 300 products to be produced during the planning horizon in three daily work shifts.
Four of them have 10 products per work shift, and three have 9 products. In these instances, the
production planning horizons can be one, three, seven, and ten days.

Considering the established experimental context, the results showed that the DSS -
ASPT algorithm generates all the requested products. In some instances, the makespan exceed
the planning horizon, and there may be a delay in production. We can observe that the planning
horizon is respected in instances with the least number of products per work shift. This result
can be indicative of the ideal number of products per work shift in the industry under study.
Regarding total tardiness, as the number of products to be generated grows, the delay in their
production also increases. Regarding the quality parameters of the products, it is clear that the
blending problem was successfully solved. The deviations from the quality parameters with the
highest weights were minimal, and those from the other parameters were not high.

In addition to sequencing all required products, respecting production specifications,
and reducing production delay, the developed algorithm has a low runtime. In this way, we
validate its use to support decision-making in the company.

In the method proposed, a product is chosen to be inserted into the solution greedily at
each step. The advantage of this type of algorithm is that a solution is found quickly and, in
general, has good quality. On the other hand, the disadvantage is that greedy strategies do not
always provide the best solutions to a problem. In this sense, we propose as future works to
develop metaheuristic-based algorithms to generate even better solutions, such as the Iterated
Local Search and Genetic Algorithm. In addition, we propose to evaluate the proposed method
in instances of other similar industries and adapt it to handle other production processes that
use, for example, more than one conveyor belt to transport the raw materials.
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9. Publications

So far, this research has resulted in two papers: one published in the proceedings of a
scientific event and another submitted to a journal. Below are their details.

1. Title: Sequenciamento de produtos em fornos a arco: Um estudo de caso em uma
indústria mı́nero-metalúrgica
Authors: Rafael de Freitas Bacharel, Marcone Jamilson Freitas Souza e Luciano Per-
digão Cota
Event: XXIII Congresso Brasileiro de Automática 2020
Local: Virtual
Period: November 23rd to 26th, 2020

2. Title: Product sequencing and blending of raw materials to feed arc furnaces: A decision
support system for a mining-metallurgical industry
Authors: Rafael de Freitas Bacharel, Marcone Jamilson Freitas Souza e Luciano Per-
digão Cota
Journal: Journal of Control, Automation and Electrical Systems
Observations: Accept for publishing.
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